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Abstract

Friction and wear are recognized as one of the most puzzling problems, not only in many

engineering and manufacturing applications, but also in a fundamental scientific sense. In fact,
friction is a nonlinear stochastic effect with a distinct time, position and temperature variability.
While frictional phenomena on the macro- and meso-scales can be considered well described,
and their characteristic features can be simulated via suitable models, as well as generally
efficiently compensated by using proper control typologies, the study of friction, the parameters
that influence its value and the respective models in the nanometric domain are still in an early
stage, due to various experimental and modelling complexities.

The research performed in the framework of the doctoral thesis provides a scientific
contribution to the study of dry (unlubricated) friction by characterising the parameters
influencing its value at the nanometric scale, and especially the dependence of friction on
material properties, loading conditions, the velocity of motion, as well as temperature. The
characterisation of the dependence of friction on the listed parameters is based on experimental
measurements performed by employing a Scanning Probe Microscope (SPM). Due to the
number and variety of the monitored influences, the number and type of measurements is
determined by a state-of-the-art Design of Experiment (DoE) methodology by employing
Voronoi tessellations. To obtain predictive models linking the process variables to the value of
nanometric friction, the obtained measurement results are then validated numerically via a
thorough comparative analysis of state-of-the-art machine learning methods. Despite the
marked complexity of the analysed phenomena and the inherent dispersion of the
measurements, the developed symbolic regression models, show, depending on the type of the
sample, an excellent prediction accuracy between 72 and 91%.

Keywords: nanometric friction, atomic force microscopy, nanotribology of thin films,

experimental measurements, friction modelling
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ProSireni sazetak

Trenje i1 troSenje su jedan od najizazovnijih problema u mnogih inZenjerskim i
proizvodnim primjenama. Doista, trenje je nelinearna stohasticka pojava s izrazenom
vremenskom, prostornom i temperaturnom varijabilno$¢u. Dok je trenje u makro- i mezo-
domeni dobro objasnjeno te je njegove ucéinke, primjerenim modelima, moguc¢e modelirati i,
primjerenim sustavima regulacije, najces¢e i1 uspjesno kompenzirati, u nanometarskom
podrucju je proucavanje trenja, parametara koji utjeCu na trenje, te nalazenje odgovarajuéeg
modela tih pojavnosti jos§ u zametku.

Karakterizacijom utjecajnih parametara u nanometarskom podrucju, a posebice
ovisnosti trenja o svojstvima materijala, opterecenju, brzini relativnog gibanja te temperaturi
triboloskog para, istrazivanje provedeno u sklopu doktorske disertacije daje znanstveni
doprinos izu¢avanju trenja klizanja bez podmazivanja. Eksperimentalno su analizirani tanki
filmovi pet razli¢itih materijala: aluminijevog oksida (Al203), aluminija, molibden disulfida
(MoS»), titanijevog dioksida (TiO2) te martenzitnog nehrdajuceg celika (X39CrMol7-1).
Doista, zbog povoljnih svojstava otpornosti na trosenje i njihove tvrdoce, prevlake od Al2Os3i
TiO2 su Cesto koriSteni materijali za primjene u mikro- i nanoelektromehani¢kim sustavima
(M(N)EMS) kao i, opéenito, u preciznim konstrukcijama. Ti su uzorci sintetizirani u obliku
tankog filma metodom talozenja atomskih slojeva (Atomic Layer Deposition — ALD) na
silicijev (Si) supstrat. Ostali prouc¢avani uzorci su odabrani za istrazivanje zbog njihove Siroke
primjene u op¢em strojarstvu te u preciznim konstrukcijama. Zbog povoljnih kliznih svojstava
sulfida, MoS:; se, tako, &esto koristi kao kruto mazivo. Cisti Al je jedan od najcesce koriStenih
materijala za lake i precizne konstrukcije, dok je martenzitni nehrdaju ¢elik X39CrMol7-1
odabran kao predstavnik visokokvalitetne grupe celika za strojne elemente. Ovi uzorci su
sintetizirani metodom taloZenja pulsiraju¢im laserom (Pulsed Laser Deposition — PLD), §to je
omogucilo i da se prvi puta postigne sintetiziranje tankog filma visokolegiranog ¢elika.

Eksperimentalno mjerenje pretraznim mikroskopom atomskih sila u modalitetu rada
mjerenja poprecne sile (Lateral Force Microscopy — LFM) vrSeno je na svim uzorcima
strukturiranim naéinom u eksperimentalnim toCkama definiranim trima promjenjivim
tehnoloskim parametrima: normalnom silom Fn = 10...150 nN, brzinom klizanja v =5...500
nm/s i temperaturom 4 = 20...80 °C. Pedeset mjernih toc¢aka je pritom definirano Voronoi
teselacijskom Design of Experiment (DoE) metodom podjele domene mjerenja u granicama

promjene navedenih utjecajnih parametara, te je mjerenje u svakoj tocki ponovljeno pet puta,
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pa je tako u analizi ukupno izvrSeno 1,250 mjerenja. Eksperimentalna metodologija je u tom
kontekstu strukturirana na nacin da u kalibracijskom postupku uzima u obzir i promjenjive
ucinke adhezije ali i vode¢i ratuna o potrebi kompenzacije temperaturnih rastezanja.
Razvijenom metodologijom je po prvi puta uopée postignuto mjerenje trenja na nanometarskoj
razini s tri promjenjive veli¢ine.

Dobiveni rezultati mjerenja omoguéavaju ne samo uvid u ponasanje pojedinog
analiziranog materijala u danim promjenjivim uvjetima, ve¢ i odredivanje korelacijskih
funkcija koje povezuju parametre procesa s vrijednoscu sile trenja na nanometarskoj razini.
Temeljita komparativna analiza primjene razli¢itih naprednih metoda strojnog ucenja na mjerne
podatke je omoguéila odredivanje korelacijskih funkcija, odnosno prediktivnog modela trenja.
Usprkos kompleksnosti analiziranih fizikalnih pojava te znaajnom rasipanju mjernih rezultata,
provedena je analiza omogucila da se, ovisno 0 uzorku, primjenom razvijenog matemati¢kog
modela metodom simbolicke regresije, dobije to¢nost predvidanja sile trenja, u odnosu na radne
parametre, na razini od 72 do 91%. Takva izvanredna to¢nost predikcije omogucava ne samo
uvid u funkcijsku ovisnost trenja na nanometarskoj razini o promatranim varijablama, nego i
stvara preduvjete za proSirenje postojecih modela trenja, ¢ime bi se njihova prakti¢na

primjenjivost prosirila i na nanometarsku razinu.

Kljucne rijeci: trenje u nanometarskom podrucju, mikroskopija atomskih sila, nanotribologija

tankih filmova, eksperimentalna mjerenja, modeliranje trenja
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1. Introduction

This part of the thesis provides general introductory information about the presented
research. The introductory part is conceived as a brief overview of general scientific motivation,
aims and contributions of the conducted research presented in this thesis, and, an outline of the

thesis organization.

1.1. Scientific Motivation

Tribology is the scientific discipline that studies friction, wear and lubrication. It is of major
practical importance for mechanical engineering applications, especially in the designing stage,
as well as for securing an efficient and reliable working life of various parts, assemblies and
systems. in fact, since most of practical engineering devices are assemblies with several parts
in contact and relative motion, friction is inevitable. To create the conditions for designing
components and systems with minimal power dissipation and degradation, great attention was
dedicated so far to the study of the physical and chemical origins of friction [130], [138].
Despite the large number of tribology studies on the macroscopic scale, a clear understanding
of the physical fundamentals of friction does not yet exist [14], [153]. The main reason for this
lack of insight is the difficulty in observing the interactions that occur deep in the contact
regions between the two bodies. The macroscopic contact of two smooth solid surfaces is, in
fact, composed of a large number of contacts between microasperities existing on both surfaces
in contact [25], [26]. Friction phenomena is, in reality, based on atomic interactions between
the two surfaces in contact, as well as microscopic elastic and plastic deformations, which
define the morphology and distribution of stress in these contacts. This is the main reason why
is it important to gain a better insight into the mechanisms of friction and contribute to the
research especially in the micro- and nanodomains [133], [145]. Research of frictional
phenomena in these domains is, thus, not only of paramount importance for obtaining physical
insights into the studied complex phenomenon and the very origin of friction, but also a
steppingstone to the development of novel models and techniques for practical applications.

The wide applicability of tribological research, at all scales, is a big motivation for thorough
studies in this area. Applications range from nanometric and atomic scales, pertaining
particularly to micro- and nanoelectromechanical devices, implemented nowadays all around

us, e.g., in medical applications, scientific and other instruments in all spheres of human
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endeavours, to large-scale engineering marvels, and even space exploration. All these areas
confirm that friction is an omnipresent phenomenon. Also, achieving the goal of more efficient,
precise and reliable engineering designs is simply “a must” in attaining modern, sustainable and

ever more environmentally friendly future devices and structures [67], [68].

1.2. Aims of the Work

Based on the outlined motivation, the goal of this thesis is to contribute to the basic
understanding of the friction phenomena at the nanometric scale by applying state-of-the-art
experimental and mathematical methods. The study of nanotribological phenomena is hence
performed by experimental methods, i.e., via thorough experimental analyses of a chosen set
of samples by atomic force microscopy. The main objective of the experimental study is to
collect data on the friction force while varying multiple influencing parameters, i.e., the
conditions affecting the tribological behaviour of individual samples and a silicon tip of the
scanning probe microscope. The considered variable parameters are those that influence the
most the physical process of friction, i.e., normal force Fu, sliding velocity v, and temperature 9.
The studied materials are, in turn, of practical importance for applications such as M(N)EMS
systems and precision mechanical engineering: aluminium oxide (alumina) (Al203), aluminium
(Al), molybdenum disulphide (MoSy), titanium dioxide (TiOz), and martensitic stainless steel
(X39CrMo17-1). To determine the optimal configuration of experimental measurements while
performing complex and time-consuming experiments involving several variable influencing
parameters imposed on different samples, the Design of Experiments (DoE) methodology is
applied, allowing to reduce the required number of individual measurements while providing
enough data for the subsequent modelling and insight into the observed phenomena. The final
and most important goal is to obtain the simplest and most precise form of correlation
function(s), i.e., functions that link the value of the friction force with the considered variable
influencing parameters for each of the tested materials. Furthermore, the discovery of the
underlying mathematical form describing this complex physical phenomenon will also provide
novel and state-of-the-art fundamental insights into the tribological behaviour at the nanometric

scales with multidimensional influential parameters.

1.3. Contributions of the Thesis

The research presented in the doctoral thesis constitutes an effort to give a scientific
contribution to the fundamental studies of friction. The contribution of the work consists in
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clarifying and quantifying the impact of the main influencing parameters on the frictional force
in the nanometric range. Resolving this problem involves the analysis and synthesis of previous
theoretical findings and experimental results thus allowing the identification and development
of novel experimental and mathematical approaches. The main hypothesis of the performed
research, based on extensive experimental study while observing the influence of variable
parameters and materials, as well as via a through and detailed mathematical analysis of the
obtained results, is that it is possible to attain accurate functional correlations allowing to
completely characterise the value of the frictional force in the nanometric domain with
multidimensional variable parameters.

The experimental part of the research involves studying the selected thin-film samples:
Al>O3, Al, MoS;, TiOz and X39CrMo17-1. In this framework, the Al,O3z and TiO, samples,
which are often used as standard materials for coating of various M(N)EMS structures and have
thoroughly studied optical and electronic (semi-conductive) properties, are produced via
Atomic Layer Deposition (ALD). On the other hand, Al, MoS; and X39CrMo17-1 are materials
which are broadly used in general engineering applications as structural materials (aluminium
and steel) or as a solid lubricant (MoSz) and have been synthetized by using Pulsed Layer
Deposition (PLD). The synthesis of a stainless-steel thin-film sample is not described so far in
the accessible literature, so that its obtainment presents by itself a novel contribution of the
thesis. This type of sample allows also a future comparison of the herein obtained data with
data relative to the behaviour of the bulk material of the same chemical composition and
structure in micro- or macrotribological regimes, creating the preconditions for further studies
of scale-effects and the eventual development of multi-scale models.

The friction force on all samples is assessed experimentally by using the Atomic Force
Microscope (AFM) in Lateral Force Microscopy (LFM — known also as the FFM — Friction
Force Microscopy) mode. To minimise the number of needed measurements, the experiments
performed on the analysed samples are then configured by applying a novel Design of
Experiment (DoE) methodology. In fact, a preliminary study of the possibility to use for this
purpose conventional DoE methods such as Box-Behnken, Taguchi, or various factorial
designs, allowed establishing that all of them allow describing only the low-order trends of
frictional variability with respect to the influencing parameters taken into account, and
generally would not provide a detailed insight into the studied phenomena. The sampling of the
experimental design space is, thus, obtained by using the Centroidal VVoronoi Tessellation
(CVT) technique. Since up to date this sampling method was not applied to nanotribological

measurements, this, alongside the developed elaborated experimental methodology for the
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concurrent characterization of the studied influencing parameters on friction in the nanometric
domain, presents again a novel contribution of the thesis. Due to the complex and time-
consuming nature of the used experimental technique, the number of points selected for the
main experimental part for each of the used sample materials is then 50, with 5 repetitions for
each measurement point, resulting in a total number of 1,250 measurements.

A novel approach to modelling the data collected via the resulting well-structured
experiments, is, however, needed. A thorough comparative analysis of state-of-the art Machine
Learning (ML) methods, namely the so-called black-box algorithms (support vector machine,
random forest, multilayer perceptron, etc.) on one hand, and the function-generating (white-
box) modelling methods (various types of Symbolic Regression (SR) based on Genetic
Programming (GP)) on the other is hence performed on the obtained experimental datasets,
providing the basis for testing the predictive performance these methods. A novel predictive
model of nanoscale friction is thus proposed, allowing to obtain predictive function(s) of the
dependence of the value of the friction force in the nanometric domain each of the considered
sample materials in the multidimensional space defined by the considered ranges of influencing
parameters. These functional correlations provide a very important and valuable scientific
contribution for further research in the field of friction and the development and validation of
novel theoretical and practical models. The performed research contributes, thus, successfully
to a more complete and far profounder understanding of tribological phenomena on the
nanometric scale.

Thus, a complex phenomenon, such as friction at the nanoscale, comprising of multiple and
concurrently interacting parameters with complex synergistic effects, is for the first time
successfully studied by employing complex novel experimental methodologies, in the
framework of a newly-developed systematic approach for multidimensional experimental

analysis based on applied state-of-the-art machine learning and artificial intelligence methods.

1.4. Organization of the Thesis

The doctoral thesis is organized in structured sections covering each of the main parts of the
research. In Chapter 1 the main scientific motivation and objectives of the research are
underlined, especially stressing the contributions given to the considered research field. The
state-of-the-art in experimental nanotribology is presented in Chapter 2 where brief historical
notes and introductory basics of tribology are given as well. Chapter 3 of the work describes in

detail the developed experimental methodology for measuring the nanoscale friction force,
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including the measurements of the adhesive forces. A detailed report about the used Design of
Experiments, the synthesis of the analysed samples, the characterisation of the samples, and the
description of the salient features of the measurement methodology using the AFM are provided
in this part of the work as well. Important insights into the original contributions to the
experimental research in this field, in terms of measurements with multiple variable parameters
as well as of the introduced correction terms of the calibration factors, compensating for the
temperature variability of the adhesive forces, are thoroughly described. The obtained
experimental data are systematically analysed in Chapter 4, thus providing the basis for the
development of a predictive model of nanoscale friction. Numerical methodologies used for
data mining, implemented by employing various state-of-the-art machine learning methods, are
comparatively analysed in terms of their predictive performances on separately measured
testing datasets. Based on such a sound scientific foundation for the selection of the best
performing method, a predictive model is finally chosen and scrutinized in Chapter 5 of the
thesis. The hence obtained results and the respective critical discussion are given in this section
of the work as well. The wide-ranging conclusive remarks and a foresight of the possible future

research directions are presented in the conclusions of the thesis in Chapter 6.







2. State-of-the-Art

Friction is an omnipresent phenomenon in all natural and man-made processes involving
contacts between two bodies in relative motion. The resulting force, which opposes the
movement of the two bodies in contact, is the friction force that, in fact, is a reaction force to
externally imposed force conditions. Part of the energy used to generate movement of the bodies
in contact is transferred to the frictional phenomena and dissipated through heat generation,
elastic and plastic deformation of contact surfaces and other manifestations [14].

The studies of interactions between two surfaces in contact date back to ancient times, i.e.,
to ever-since humanity started evolving enough to take advantages of man-made devices and
primitive systems to aid them in everyday life. The study of friction closely follows the
technical aspects of human development. Ever since the earliest civilizations, from the Stone
Age, through Egyptian, Roman, and Greek periods, but also in the far-east and South American
civilizations, there are evidences that lubrication and friction phenomena were empirically
studied and applied to processes [48]. The insight in frictional phenomena through ages, from
the rubbing of two pieces of wood for producing fire, the invention of the wheel, or lubricating
sliding ways for huge stone blocks in Egypt, was very limited, until renaissance flourished, and
a new generation of thinkers started systematically studying the physical phenomena
surrounding us. In this period the great master Leonardo Da Vinci studied such phenomena as
well, and he is considered as the first individual who studied friction systematically [48], [73].

In more recent times, the importance of friction on economy and energy consumption was
emphasized particularly in 1966 in the famous report by H. P. Jost [81] for the British
government, where the term tribology was introduced and it was concluded and emphasised
that friction and wear have a significant cost on UK economy. More than 50 years later, the
importance of acknowledging the effects of friction is increasingly present in modern
technologies [68]. The growing concerns over energy consumption and environmental
sustainability requires nowadays new ideas and multidisciplinary approaches to overcoming
the still not fully grasped nature of friction. Contemporary reports [68], [186] emphasize, thus,
the impact of friction and wear on energy consumption, economic expenditure, and CO:
emissions present on the global scale, with estimates that ~23% (119 EJ) of world’s total energy
consumption originates from tribological contacts. In this total, 20% (103 EJ) is used to
overcome friction, and 3% (16 EJ) to remanufacture worn parts and spare equipment due to
wear and wear-related failures [68], [186]. Taking advantage of the new tribology technologies

7
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(surfaces, materials, and lubrication technologies) for friction reduction and wear protection in
mechanical systems, have, therefore, the potential to produce enormous energy savings [68],
[186].

Regarding the development of corresponding friction models, especially important is the
work of the French physicist Guillame Amontons, that postulated the “laws” of friction - stating
that the friction force is proportional to normal load and independent of the contact area [48],
[174], as well as, afterwards, the work of Charles Augustin de Coulomb that added the rule that
friction is independent of sliding velocity [48], [174], thus providing first modern contributions
to the scientific treatise on friction. These conclusions are based on empirical observations and,
even though often called laws, there is no fundamental principle that forbids a system to exhibit
friction properties that do not obey them. In any case, these observations can be summarized
by the equation [48], [174]:

dF

f

M:E

2.1)

where u represents the dimensionless friction coefficient corresponding to the ratio of the
friction force Fr and the applied normal force Fn.

Further developments of science, and industry-based society in general, led to a publication
by Richard Stribeck, a German scientist and engineer, who defined a curve that relates friction
with viscosity, speed and load [48], [174]. A modern-age breakthrough in tribology during the
1950s was then given by Philip Bowden and David Tabor [27], with their physical explanations
of the laws of friction, where they determined that the true area of contact is a small percentage
of the apparent contact area, and that true contact is formed by the asperities on the surfaces of
the bodies in relative motion [62]. As the applied normal force increases, more asperities come
into contact, while the average area of each asperity also increases. Generally, in tribological
terms, any mechanical system with technical surfaces in contact and in relative motion can be
seen as a tribo-system with rough surfaces that comprise the real contact area Ar given, as
shown in Figure 2.1 that presents the basis for all modern research in tribology, by the
contacting asperities.

The resulting conditions of the tribo-system are defined by numerous characteristics
including the materials in contact, their mechanical properties, operational parameters such as
velocity, lubrication and roughness, as well as the interaction parameters comprising the
interaction potential and atomic-scale interactions in the asperities themselves [61], [62], [80].

The multiple concurrent effects that influence the interactions in a single asperity contact are

8
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the cause of the significant difficulties in modelling frictional phenomena. At present, one is
thus limited to observing and mathematically describing the single asperity contact depending
on the scale of interest, whereas the different dominant mechanisms can include plastic
deformation of the involved materials at high contact pressures, elastic-plastic regimes, and
fully elastic deformation, but also the lubrication conditions, the properties of the used
lubricant(s), third-body interaction, wear-induced particles and cold welding, or even nanoscale

effects of adsorbed water layers’ meniscus and the nanoscale physical properties of the surfaces

in contact.
Tribo - pair
v
Rough surface Single asperity contact
v multy-asperity cont.
| )
Any mechanical | N
system F N
-«

Figure 2.1 Friction between two surfaces is governed by the behaviour in a single asperity

contact.

The development of contact mechanics models describing single asperity contacts have
allowed showing that the latter are indeed the main source of the macro-scale frictional
behaviour. In synthesis, single asperity models originate from Hertz's solution relating to the
elastic contact between a sphere and a planar surface and between two spheres, where equations
for the determination of the contact radius and the indentation depth were derived, but, adhesion
and surface forces in the contact region are neglected [77]. Since adhesive effects play an
important role at the single asperity contacts’ scales, an extension of the Hertz model was
elaborated by Johnson, Kendall and Roberts [80], resulting in the well-known JKR theory. The
basic contribution of this model is the inclusion of the adhesive effect within the contact zone,
while the adhesive interaction outside the contact zone are neglected. The JKR method
considers the surface energy of adhesion of both involved surfaces, resulting in a real area of
contact Ar larger than that defined by the Hertz model [77], [134]:

sxH

1B (2.2)
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where A is the effective surface energy of adhesion of the involved surfaces, R* is the effective
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contact radius, and E* the effective Young’s modulus. The two last quantities are defined as
[77], [134]:
. RR,

2
I 1—1/12 +1—1/22
7D 3 (2.4)

where R; are the radii of the spheres in contact, E; are the respective Young's moduli while v;
are the corresponding Poisson ratios of the two bodies. From these relations, and considering
the effects of adhesion, the JKR model predicts the force needed to remove the bodies from
contact, i.e., the pull-out force, defined as [77], [134]:

FIR = 3R (2.5)
r 2

By expanding the Hertz theory with adhesive effects, the JKR theory enables, thus, to explain
the formation of contacts during the unloading cycle, i.e., the occurrence of the negative normal
force.

An alternative thermodynamic approach based still on Hertz theory, was, in turn, used by
Derjaguin, Muller and Toporov (DMT) [46], where the attractive adhesive force is added to the
normal load so as to obtain the corrected indentation depth and contact area. Due to a finite
effect of adhesion when the applied load is zero, the DMT model leads to a so-called sub-linear
dependence of the friction force on the exerted normal load, which is an observation of non-
vanishing friction at below-zero normal load due to further existence of adhesive forces in the
contact even though the applied load is zero, thus the resulting sphere-plane model pull-out

force can thus be expressed as [46]:
FPMT = —2mAR’ (2.6)

The DMT model was experimentally proven first by Enachescu et al. [51] on a hydrogen-
terminated diamond (111)/tungsten carbide mono-asperity interface using an ultra-high vacuum
atomic force microscope (UHV-AFM). By measuring the local conductance in contact as a
function of the applied load, it was hence shown that, for the considered extremely hard single
asperity contact, the load dependence is perfectly described by the DMT continuum mechanics
model. Since the DMT model takes into account the surface forces outside of the contact, but
not the deformations due to these forces, it is suited well when dealing with rigid contacts and
low surface energies, while the JKR model is more appropriate for more compliant contacts

and higher surface energies [162].

10



Marko Per¢i¢: Characterization of Parameters Influencing Friction in the Nanometric Domain

2.1. Nanotribology and M(N)EMS

In the above section, a brief basis of fundamental tribological terms was given, providing
insight into the imperative importance of single-asperity contact behaviour. In fact, the study
of single asperity interactions is an important link between the macro- and the nano world. The
impact of surface forces is clearly noticeable in friction and adhesion with micro- and
nanocontacts. In particular, the adhesion force between two objects can originate from a
combination of different contributions such as the van der Waals forces, the electrostatic force,
chemical and hydrogen bonding forces, capillary forces, and others [34], [80]. The interaction
between two surfaces in contact is therefore a complex phenomenon induced by a great variety
of interactions that must hence be considered.

Friction cannot be studied without considering wear as well. Friction, wear and adhesion are,
in fact, intimately related and, to understand what happens at the macroscopic level, the non-
equilibrium processes occurring at the molecular level must be considered [32], [34].

Novel experimental techniques such as the Atomic Force Microscope (AFM) or the
Scanning Probe Microscope (SPM), which is used in this work and will be comprehensively
elaborated below, allow looking down to the atomic scale and provide means to approximate
closely the conditions of the single asperity contact [23], [60], [72]. Other methods for
researching the same complex phenomena can be based on computational simulations on the
atomic level, i.e., on Molecular Dynamics (MD) simulations of atomistic behaviour that have
shown that, depending on the atomic-level geometry of the contact, deviations from a
continuum approach can occur [55], [135]. In addition to the general shape or the nanoscale
roughness of the contacting bodies, the relative arrangement of atoms at the interface can have
thus a strong impact on nanoscale friction and area-load relations [13], [109], [134].

Friction and adhesion are also a widely recognised cause of failure of micro- and nano-
electromechanical devices (MEMS and NEMS), comprising relative motion of the constituting
elements, inferring an even greater importance of their study [15], [17], [26], [156]. In fact,
miniaturisation implies a growth of the surface-to-volume ratio, thus inducing a scale-
dependent increase of the importance of friction and adhesion and their prevalence over
volumetric forces. Tribological phenomena have slowed the development of micro- and
nanoelectromechanical systems (M(N)EMS), limiting in some instances their commercial
application to those systems that do not include contacting sliding interfaces [17]. As a result
of large surface forces, M(N)EMS components tend even to stick together. This “stiction”

behaviour poses an engineering problem both for the device itself and its design process.
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Despite many important advances, failure is thus, unfortunately, unavoidable for most MEMS
devices (e.g., gears, locks, shutters, optical switches, etc.) that incorporate sliding interfaces
[15], [58], [156]. What is more, in ambient conditions, due to the condensation of humidity, the
surface might be covered by a thin layer of water. The adsorbed water molecules influence then
the contact between the two solids, modifying their adhesion and friction. From a general point
of view, the wetting phenomenon corresponds to the equilibrium between a solid phase on
which are deposited atoms or molecules of a liquid phase, and the whole is surrounded by atoms
or molecules of a gaseous phase. The molecules of water arrange themselves in the gaps and
small cavities between the surface asperities. They form capillaries that bind the neighbouring
surfaces. For constant environmental conditions, the size of the capillary depends on the
geometry and chemistry of the surfaces [8], [11], [34].

All these phenomena are taken into account in nanotribology where, when compared to
conventional tribology and microtribology with notable surface wear and dominating bulk
material properties, light load conditions and nanoscale surface properties and interactions
dominate the resulting tribological phenomena. Nanoscale tribology studies are thus critical for
micro- and nanostructure analyses but, by enabling an in-depth insight into the fundamental
contact behaviour, they also provide an invaluable bridge between science and engineering [17],
[134].

Devices characterised by micro- and nanopositioning precision are often required in
precision engineering as well as in micro- and nanosystems’ technologies. The accuracy of
these devices is again often limited by frictional effects with their stochastic nonlinear
characteristics [14], [111]. In modern applications of precision machines and positioning
devices, it was then experimentally proven several times that the generalized approximation
models of friction show satisfactory performances for control purposes which has been often
proven experimentally [5], [82], [83]. These models, such as the Generalized Maxwell-Slip
(GMS), the Lu-Gre and others [5], [7], [131], [132], are based on generalization and system
identification but they do not provide sufficiently good results when true nanometric
positioning is aimed at [47], [63], [150]. While frictional phenomena on the macro- and meso-
scales are well described and their effects can be simulated via suitable models [5], [82], [131],
[132], [176], [182], as well as generally efficiently compensated by employing proper control
techniques [83], [99], [111], [182], the available friction models do not consider true nanometric
motion or scaling phenomena related to friction.

The conventional models provide, hence, often insufficient precision for micron- or

submicron-size devices, where the mechanisms influencing friction are different from that
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dominating macroscale friction. Nanotribology is hence once more an essential ingredient in
establishing the basic understanding, not only in the fundamental tribological sense, but also
relative to interfacial phenomena in MEMS and NEMS devices, computer storage devices and

other ultra-high precision applications [17], [58].

2.2. State-of-the-Art in Experimental Nanotribology

Experimental research of friction at the nano- and atomic levels is carried out mainly in the
last three decades or so, upon the development of new experimental techniques, such as the
Scanning Tunneling Microscope (STM) by Nobel prize winners G. Binnig and H. Rohrer [24],
[25]. These breakthroughs started a scientific revolution in the field, and soon afterwards the
AFM was developed by the same team [23]. The experimental and theoretical studies of friction
on the atomic scale received therefore a significant impetus.

Among the first published studies of the characteristics of friction at the atomic level
between the sharp tip of tungsten and a graphite substrate, conducted by using AFM, is that
published by Mate et al. in 1987 [109]. Very low forces (<10 N) are used in this experiment,
and the average coefficient of friction is found to be 0.012. This experiment allowed also
showing the stick-slip effect at the atomic level, with a period equal to the lattice constants of
graphite. After this early work, many researchers headed in the direction of analysing friction
at the atomic level. Akamine et al. 1990 used hence an AFM device to measure, at the normal
force level of the order of 10" N, the characteristic stick-slip effect of gold on mineral silicate
(mica), and reported on the resulting characteristic saw-tooth dependence of force vs.
displacement [3]. By using an AFM, Ruan and Bushan in 1994 employed a SisN4 tip to
investigate the influence of surface roughness on the tribological properties of graphite and
concluded that the coefficient of friction varies with different surface roughness of the analysed
substrates. The measured friction coefficient was in this case found to be 0.01 for the RMS
(Root Mean Square) roughness of 10 nm, and 0.03 for the RMS roughness of 140 nm. This
result was explained by the loss of orientation of the substrate with large surface roughness
[142]. Fujisawa et al. in 1993 explored the stick-slip behaviour at the atomic level between mica
and SisN4. They used different directions of scanning to investigate the influence of lattice
orientation to vertical and lateral forces, and observed the characteristic vertical force in the
shape of a square wave, as well as the characteristic lateral forces as a saw-toothed wave during
the movement in the stick-slip regime [54]. Using AFM, Tambe and Bushan in 2004 studied

the effect of the scale, i.e., the size of the sample on the tribological characteristics, and
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concluded that the friction coefficient decreased by reducing the observed scale. The friction
coefficient of Si (111) in a macroscale experiment, with a normal force of 1 N, was 0.6, while
the friction coefficient reported for the nanoscale experiment, with normal forces in the range
of 1-15 uN, was reduced by almost 10 times to the value of 0.05. This drastic change in the
coefficient of friction was explained to be the consequence of different mechanisms of friction
at the various considered scales, as well as of the different conditions of contact between the
two materials (the adhesion effects) [156]. The influence of the sliding speed on the tribological
properties of the materials at the nanoscale was investigated by Tambe and Bushan in 2005
[157]. Their study was performed on a variety of materials involving lubrication such as
monocrystalline Si (100) with a layer of oxide, polymers PDMS (poly(dimethylsiloxane)) and
PMMA (poly- (methylmethacrylate)) coated with a DLC (Diamond-Like Carbon), with a layer
of various lubricants such as PFPE (perfluoropolyether) based Z-DOL and Z-15 (commercial
lubricants), and a monolayer hexadecanthiol (HDT) which are used in practice as lubricants for
magnetic disks. For pure Si the frictional force was reduced from 20 nN to 15 nN, while in the
case of Si with a Z-15 coating, the friction force was reduced from 5 to 3 nN, while, due to the
formation of a meniscus of condensed water molecules, a corresponding increase in sliding
velocity from 5 to 1000 um/s was also induced. Bushan and Sundararajan (1998) studied the
effects of relative humidity and the radius of the tip of the probe on the nanotribological
behaviour of the sample. The primary purpose of changing the apex radius of the tip in the
experiments, was to change the contact surface. Their results showed that the friction coefficient
increased with higher humidity and larger contact surfaces [20]. By using a micro-tribotester
and an AFM, Sung et al. (2003) carried out an investigation of the effects of the contact angle
between the tip and the surface on the friction coefficient, and concluded that the tribological
characteristics of the materials at the nanoscale are highly dependent on the structure of the
surface, on topology and on the geometry of the contact [155].

Complex effects involved in nanoscale contacts comprise, therefore, effects of scale,
adhesion, wear, normal load, surface roughness and sliding velocity or the properties of the
involved materials — that all form the tribological system. It is often necessary to study also the
effects of temperature, humidity, and even the history of the contact at the observed surface,
and the instruments needed to perform this research are today readily commercially available
with all the accompanying computer equipment and associated control and experimental set-up
peripherals.

To further understand the phenomenon of friction and adhesion at the nanoscale level, many

influential scientific groups around the world are thus performing a vast number of
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measurements. Effects analysed in more recent studies in the field are concentrated on frictional
behaviour of 2D materials such as single-layer graphene (SLG). Chu et al. studied hence the
effect of confined water between nanolayers of SLG, and reported variations of the friction
force and varying positive and negative velocity dependences [40]. Milne et al. reported, in
turn, that the adhesive forces in vacuum conditions are dependent on the sliding history between
the analysed asperities [116]. Newer studies indicate, moreover, a very intricate, often
nonlinear, dependence of friction in the micro- and nanoscales on velocity and temperature but
even on the normal loads [14].

From this comprehensive but necessarily brief overview given in this chapter, it can be
concluded that the current state of nanoscale friction research is still relatively limited to studies
of the influence of a single variable parameter on the friction force, and that these often report
conflicting conclusions. Proposed models resulting from the experimental findings are even
more rare, and mostly limited to micro- and macroscale experiments [152]. It is therefore clear
that this field of research will greatly benefit from the work reported in this thesis where a
structured, multi-variable, experimental analysis of different materials, and a novel predictive
mathematical model allowing to specifically characterize the main variables’ effects on
nanoscale friction, are proposed. In the next section of the work an exhaustive description of

the main constituents of such an innovative and powerful tool will hence be given.
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3. Experimental Measurements of
Nanoscale Friction

Based on a thorough study of the current state-of-the-art related to the experimental
methodology applicable to nanotribological studies given in Chapter 2 of this work, a structured
transdisciplinary method for the experimental determination of the value of the friction force in
the nanometric domain on thin film samples is developed and presented in this part of the
thesis'. As described in Chapter 2, a clear need for the extension of SPM experimental studies
to the concurrent validation of the influence of multiple variable parameters on nanoscale
friction is evident [107], [163]. The dependence of nanoscale friction on multiple process
parameters on these scales, comprising normal forces, sliding velocities and temperature, is thus
studied here experimentally via the Atomic Force Microscope (AFM) in the Lateral Force
Microscopy (LFM) mode, which is described below. The procedure used to characterise the
stiffness of the used probes, and especially the influence of adhesion on the obtained results, is
thoroughly described. The developed measurement methodology, based on elaborated design
of experiments algorithms, is successfully implemented to concurrently characterise the
dependence of nanoscale friction in the multidimensional space defined by the considered
process parameters. This allows establishing a novel methodology extending the current state-
of-the-art of nanotribological studies, since it allows not only gathering experimental data, but
doing it systematically and concurrently for several influencing variables at once, and including
important effects in the calibration procedures and wear effect anticipation. This, in turn, creates
the basis for determining generalizing correlations of the value of nanoscale friction in any
multidimensional experimental space that will be demonstrated in Chapters 4 and 5 of this
thesis. All these creates the preconditions to eventually extend the available macro- and
mesoscale friction models to a true multiscale model that will considerably improve the design,
modelling and production of MEMS devices, but also of all precision positioning systems

aimed at micro- and nanometric accuracy and precision.

! Part of the work described in this chapter was published recently by the author of the thesis and his collaborators
in a peer-reviewed scientific paper [128], which was produced and published as part of the obligations foreseen
in the curriculum of the doctoral study of the Faculty of Engineering of the University of Rijeka, Croatia, and
hence this chapter is based, partly directly derived and cited from this work.
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3.1. Used Experimental Apparatus and Methodology

The measurements of the values of the friction force on a careful selection of thin film
samples are performed in this work by using the Bruker Dimension Icon SPM [160] available
at the Centre for Micro- and Nanosciences and Technologies (NANORI) of the University of
Rijeka, Croatia [159], while they are controlled by using the respective NanoScope hardware

and software (Figure 3.1).

Figure 3.1 Bruker Dimension Icon Scanning Probe Microscope at the NANORI lab [160].
3.2. Sampling of the Experimental Design Space

The distribution of measurement points in the considered experimental space is determined
in this work by using a structured design of experiments (DoE) approach. Standard DoE
methods such as (full) factorial design, split-plot design, linear regression, Monte Carlo,
Taguchi, Box-Behnken and others [43], [66], [110], [152] are, however, poorly suited to obtain
a detailed insight into the studied multidimensional stochastic phenomenon. In fact, these
approaches are commonly aimed at conventional industrial practises where results are generally
limited to the values of the control variables inducing local extrema of the dependent variable
[66]. Since recent studies indicate, in turn, marked advantages in terms of the space filling
properties of an approach where DoE is conducted by using centroidal VVoronoi tessellation
(CVT) sampling [4], [50], [53], [84], [140], which is efficiently implemented in the
commercially available GoSumD software [2], CVT is used in this work to determine the
sample points in the considered multidimensional process parameters space [128], [129]. In

fact, the parameters influencing nanoscale friction concurrently considered in this work, and
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their respective value ranges, are:
% normal force Fy =10 nN... 150 nN,
% sliding velocity v =5 nm/s ... 500 nm/s, and
% temperature =20 °C ... 80 °C.

Nanoscale friction
SPM (LFM)

v

Microcantilever calibr.

¥ B

Normal force calibr. Lateral force calibr.
Thermal tune, set- SEM images, FEM,
point vs. temp. PBA, TGF11

F

Measurements @50 points per
sample, 5 repetitions

v

Tip wear, adhesion, sample
roughness, nanoscale friction

Figure 3.2 Proposed experimental methodology for obtaining concurrently the dependence of

nanoscale friction on several influencing parameters by using LFM [128].

Given then a set of desired points (“generators”) and a distance function from each generator
to its mass centroid, VVoronoi tessellations are subdivisions of the experimental space. The
variation of the influencing parameters is therefore defined via a discrete uniform distribution,
i.e., a distribution where a finite number n of homogeneously spaced values has the same
probability to be observed [2], [4], [50], [84], [140]. The integer parameters of the distribution
can thus be specified as:

n=b-a+1 (3.1)
where a and b are the lower and upper bounds of the values of the considered influencing
parameter. The distribution of sample points is thus generated by a discrete probability

distribution k attained by using a probability mass function f(k) defined in equation (3.2). On
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the other hand, the cumulative distribution function F(k), given by equation (3.3), is used to
specify the placement of multivariate random variables (i.e., the points in the considered multi-

dimensional influencing parameters’ space) [50]:

B 1/n ifa<k<b

k 3.2
J&) 0 otherwise (32)
0 ifk<a
[ 1L I TR (3.3)
n
1 ifk>b

Given a density function, the centre of mass of each subset making up the VVoronoi tessellation
can thus be determined. Since, however, generally the locations of the generators do not
coincide with the centres of mass of the data subsets, distinct VVoronoi tessellations called CVTs
are used to assure the convergence of these locations [128], [129] and determine finally the 50
measurement points aimed at in the considered multidimensional experimental space defined
by the range of variation of the process parameters: Fn, v and 9. The thus obtained values of
these influencing parameters in the required 50 sampling points are reported in Appendix A at
the end of the thesis [128].

3.3. Synthesis of the Thin-film Samples

The experimentally analysed samples in this work are carefully selected to be representative
of specific characteristic features of vastly used thin-films and comprise: aluminium oxide
(alumina or Al>03), titanium dioxide (TiO2), molybdenum disulphide (MoS2), aluminium (Al)
and X39CrMo17-1 stainless steel (denoted further on, for brevity, as SS). In fact, Al.O3 has not
only good mechanical properties (especially hardness and strength), for which it is broadly used
in MEMS technology (e.g., in packaging of MEMS devices), as well as in integrated circuit
(IC) technology, but it is also used in thin film form for coatings in implants, for insulating
applications, and when wear is to be minimised. On the other hand, TiO is broadly used in
MEMS technology for optical elements such as filters and mirrors, or as a biocompatible
coating in implants (e.g., dental ones). MoS; is a typical sample of a material with good
lubricating properties, although it is also used in nanotechnology for its electrical properties.
Aluminium, next to being the most widely used non-ferrous metal, is used as thin film for

electrical contacts and interconnectors, for reflective surfaces (as e.g., in the Texas Instruments’
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Digital Light Processor (DLP) device) or in micromechanical components. Finally, SS is
chosen as the most widely used general-purpose engineering material.

3.3.1. Atomic Layer Deposition (ALD)

Atomic Layer Deposition (ALD — principally shown in Figure 3.3a) is a vapour phase
technique (i.e., a variant of the chemical vapour deposition (CVD) techniques) enabling the
deposition of thin films of a wide range of materials, such as metal oxides and noble metals,
depending on the used precursor. The method relies on sequential, self-limiting chemical
reactions of precursor species. It is most often used in industrial and research applications for
coating M(N)EMS and various micrometre-sized structures [17]. All samples obtained in the
frame of this work are deposited on a silicon (Si) wafer.

The Al>Os and TiO2 samples used in this work are hence synthetized in the thermal mode
on a Beneq TFS 200 ALD device (Figure 3.3b) [160] at the NANORI facilities of the University
of Rijeka, Croatia [159]. The employed precursors are, respectively, trimethylaluminium
(Al(CHz)3) and titanium-tetrachloride (TiCls) in combination with water vapour (H20), while
high-purity nitrogen (purity 6.0) is used as the purging gas. The deposition of Al>Os is carried
out at 200 °C with the following ALD cycle: a 180 ms Al(CHz)z pulse is followed by a 1 s
purge, then a 180 ms H-O pulse and, again, a 1 s purge. For the TiO2 deposition at 150 °C, the
pulsing times for TiCls and H2O are, respectively, 250 ms and 180 ms, followed by purging
cycles of, respectively, 3 and 2 s [128], [129].

Vapour pulse 1  Heaters

Vapour pulse 2 Vacuum

(@) (b)
Figure 3.3 Scheme of the ALD process (a) and the used Beneg ALD device (b) [128].
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3.3.2.Pulsed Laser Deposition (PLD)

Pulsed Laser Deposition (PLD), shown principally in Figure 3.4a, and depicted in the
photograph of the herein factually used device at the Institute of Physics in Zagreb, Croatia, in
Figure 3.4b, is a physical vapour deposition (PVD) technique where high power laser pulses in
a vacuum chamber are used to melt, vaporize and ionize the surface of the target material. This
ablation produces a plasma plume that rapidly expands away from the target, while the ablated
material is collected on the substrate surface (silicon wafer). To control the deposition process,
the Optical Emission Spectroscopy (OES) method is used for in situ characterization of the
obtained plasma, which allows obtaining plasma properties, and is thus used to optimize the
pulsed laser characteristics for obtaining the desired atomic structure of the deposited thin film.
The technique is widely used for the production of a wide range of superconductive and
insulating circuit components, as well as for biocompatible and medical applications. Its main
advantage with respect to the ALD method is that PLD enables the stochiometric transfer of
material from the target to the substrates’ surface, allowing a precise chemical composition of
the used target material to be deposited in the form of a thin film [112], [170].

OES
Ly pa Substrate
; Laser plasmaé
Lens ‘i A ’
\ 4
Laser . Target ~
pulge ‘s

Vacuum chamber
(a) (b)
Figure 3.4 Scheme of the PLD process (a) and the factual PLD set-up used in the work (b)
[128].

This property of the PLD method is used in this work to synthesize in the form of a thin film
the martensitic SS X39CrMo17-1 characterised by a complex chemical composition. Other
samples obtained by using PLD are the 99.99% pure Al, and the 99.9% pure MoS: obtained
from Testbourne Ltd, UK. The Nd:YAG laser parameters employed in the thus used PLD

process at the Institute of Physics in Zagreb, Croatia [187], are: wavelength 1064 nm, pulse
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duration 4 ns at a 5 Hz repetition rate and with a pulse energy of 340 mJ. Laser pulses are
focused then on the target that is parallel to the Si substrate and inclined by 45° with respect to
the impinging laser beam, yielding a fluence of 18 J/cm?. 5,000 laser pulses are finally used to
obtain the desired film thickness of several tens of nanometres. The distance between the target,
which is rotated to avoid drilling and increase films’ homogeneity, and the substrate, is 3 cm.
Both the target holder and the substrate are kept on a floating potential at room temperature in
a high vacuum (< 107 mbar) environment [128], [129].

3.4. Characterization of the Samples

In order to determine their properties, namely the thickness, surface morphology, and
composition, the obtained samples are thoroughly characterized before the LFM measurements

by using X-Ray Photoelectron Spectroscopy and Secondary lon Mass Spectrometry.

3.4.1.X-Ray Photoelectron Spectroscopy

X-ray photoelectron spectroscopy (XPS) is a widely used method for the characterization of
surfaces, which provides valuable quantitative and chemical state information. The analysis is
accomplished in this frame by exciting the surface of the sample with mono-energetic x-rays
causing photoelectrons to be emitted from it. The energy of the emitted photoelectrons is then
measured by an electron energy analyser. The chemical state, elemental identity, and the
quantity of the detected element can be determined from the binding energy and intensity of the
resulting photoelectron peak. The obtained spectra allow thus confirming the elemental
characteristics of the synthesized films [128].

The analyses in the frame of this work are done on a SPECS XPS device [172], depicted on
Figure 3.5, available once more at the NANORI premises of the University of Rijeka, Croatia
[159].

The XPS spectra are hence measured via the spectrometer of the XPS device, which is
equipped with a hemispherical energy analyser PHOIBOS 100 MCD-5 and a monochromatized
source of Al Ka X-rays of up to 1486.74 eV. The typical XPS vacuum level during the
performed analyses is in the 10° mbar range. The obtained photoemission spectra, whose
background is subtracted, are finally fitted with sets of Gaussian—Lorentzian functions [71],
[118]. The measurements allow thus establishing that indeed the sample films are of high purity,
but also that on their surface a thin (few atomic monolayers) oxide film is formed. The latter is
characterised by a spectral contribution induced by O-H or O-C bonds; there is also a tendency
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towards the formation of surface hydroxide OH groups [126].

Figure 3.5 Used Specs X-ray Photoelectron Spectroscope (XPS) equipped with a hemispherical
energy analyser PHOIBOS 100 MCD-5 [159].

3.4.2.Secondary lon Mass Spectrometry

The Secondary lon Mass Spectroscopy (SIMS) method is based on using an internally
generated beam of ions focused on the surface of the sample to generate, via sputtering,
secondary ions. By analysing the generated secondary ions with a mass spectrometer,
information about the elemental, isotopic and molecular composition of the upper layers of the
analysed sample are hence obtained. The results of the analyses provide information about the
elemental composition (down to the ppb level) in dependence also from the depth from the
surface, thus enabling the determination of the obtained films’ thicknesses [102], [128].

The used Hiden SIMS device [160], available again at the NANORI premises of the
University of Rijeka, Croatia [159], is equipped with two ion guns, a quadrupole mass analyser
and a residual gas analyser (RGA), allowing thus in-depth profiles to be obtained by using 3
keV Ar* primary ion beams impinging at 45°, while collecting the resulting positive secondary

ions.
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Figure 3.6 Used Hiden Secondary lon Mass Spectrometer (SIMS) at the NANORI [159].

The depth scale of the SIMS craters is, in turn, determined by employing the Dektak XT

stylus surface profilometer [160].
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Figure 3.7 Examples of SIMS spectra for thin-films obtained via ALD (TiO: - a), and PLD
(MoS: - b) [128].

As shown in Figure 3.7 for a sample obtained by using ALD (i.e., the TiOz film as shown in
Figure 3.7a) and a sample obtained by employing PLD (i.e., the MoS> film as shown in Figure
3.7b), the obtained results allow hence confirming that the elemental distribution of the thin
film constituents along the depths of the used samples is quite constant, revealing once more

their good homogeneity. What is more, these results allow establishing that the thickness of the
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used thin films is, respectively, 20 nm for Al.Oz, 50 nm for TiO2, 100 nm for Al, 65 nm for
MoS; and 100 nm for SS sample, while the respective constituents permeate the Si substrate
also deeper [128].

3.5. Experimental Measurement of the Nanoscale Friction Force

The measurement of the friction force is done on the thus synthesized samples in the 50
sampling points determined by employing the above-described DoE procedure, are then
conducted by employing the contact mode of the SPM instrument, as shown principally in
Figure 3.8a. In this measurement configuration the tip at the apex of a micro-cantilever
(hereafter the respective assembly is designated as “probe”), is in perpetual contact with the
surface of the sample as governed by the control parameters of probe’s piezo actuator. A laser
is used to acquire the information about cantilever’s deflection in the normal (bending) direction
as well as in the lateral (torsional) direction, i.e., by providing a signal onto a position-sensitive
photo detector (PSPD) with four channels (A-D). In the raster scanning mode typical of the
Lateral Force Microscopy (LFM) measurements, normal deflection of the probe is hence
detected by the PSPD system separately from the lateral motion. LFM is hence used particularly
for friction force spectroscopy, enabling means to minimise the cross-talk between the PSPD
signals and thus to obtain, in terms of the signal magnitude, the clearest determination of the
friction force [17].

As shown in Figure 3.8b, the signals obtained onto the PSPD dependant on the torsional
deflection of the probe, while the cantilever travels back and forth on a predesignated distance
over the sample, are induced by surface topology features and friction. The resulting voltages
are converted to values of the lateral (transversal) force exerted on the sample by calibrating
the mechanical behaviour of the probe itself, as it will be explained in detail below.

Dry (unlubricated) contacts considered in this work are hence characterised by using LFM
measurements on 500 x 500 nm? surfaces of the analysed samples in air, thus approaching the
habitual technological conditions. All the samples are then scanned in the determined 50
measurement points along 256 scan lines with varying influencing parameters (Fn, v and 9),
while, for uncertainty and error analysis, in each point the measurements are repeated five times

for each 500 nm? measured area with a + 100 um distance from each other.
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Figure 3.8 Scheme of the SPM (LFM) measurement configuration (a) [128], and schematics of
the obtained friction signals when the tip of the probe traverses across the surface with topology

and friction variations (b - adapted from [17]).

3.5.1. Calibration of the Probes

The probes used in this thesis are Bruker's SNL-10 high-resolution probes of type D (for the
smaller values of the considered normal forces Fn) or of type A (for the largest considered Fn
values), both with a Si tip mounted on a triangular SisN4 cantilever [31]. To obtain quantifiable
data from the performed LFM measurements, a careful calibration of the stiffness of the probe
in both the lateral and in the normal direction is needed. In fact, the calibration of the normal
(flexural) stiffness of the cantilever is important for obtaining a precise value of the normal
forces exerted on the samples. The calibration of cantilever’s lateral (torsional) stiffness is, in
turn, important for interpreting the LFM signals and thus attaining a meaningful and accurate
data analysis of the performed scans, i.e., in order to obtain the effective values of the friction
force [17], [128].

The calibration is principally dependant of the actual dimensions of the cantilevers bearing
the aforementioned tip, whereas this assembly constitutes the probe. Considering that these
dimensions are in micrometre (um) range, and their production process inherently prevents the
achievement of uniform dimensions in the whole large production batches, the calibration
constitutes a hard and tedious task. What is more, in order to extend the range of considered
loads, the cantilevers used in this study are of triangular geometry, which is quite seldom for
LFM measurements, and induces additional difficulties in determining the lateral stiffness of
the probes. The issues of calibrating the triangular cantilevers is successfully overcome by a

thorough experimental study of cantilevers’ geometries by employing the field-emission
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scanning electron microscope (FE-SEM) images, and using multiple calibration techniques
available in the current state-of-the art.

Ten probe samples are therefore scanned first on a FE-SEM allowing to obtain their
dimension as shown in Figure 3.9. Statistics on the dispersion of the respective values of the
specific dimensions, due to the production process of the probes, measured according to the
scheme shown in Figure 3.10, can therefore be successfully attained (Table 3.1).

SNL-10A

10pm UNIRI 10/27/2016
LED SEM WD 10.Omm|

Figure 3.9 SEM micrographs obtained with a magnification of, respectively, 700 and 400 times
showing the planar views of the used Bruker SNL-10 probes (the shown scale-bar is 10 um).
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Figure 3.10 Considered geometrical parameters of the used Bruker SNL-10 probes [128].

The validation of the bending stiffness ky of the microcantilevers with respect to their
nominal value (for the SNL-10D probes that hereafter will be referred to as the samples used

to explain the adopted procedure, the nominal bending stiffness is k, = 0.06 N/m) is performed
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via the thermal tune method (TTM), i.e., by measuring in the time-domain the power spectral
density of cantilevers’ motion in response to dynamic excitations [12]. After measuring the
cantilever’s oscillations in air, and acquiring data for 30 seconds, the obtained power spectral
densities (PSD) are fitted with a Lorentzian model:

C,

A(f)=A, +— 2
P (f-1f,)+C,

(3.4)

where A(f) is the amplitude of the oscillations as a function of frequency f, Ao is the baseline
amplitude, fo is the centre frequency at the resonant peak, while C; and C> are Lorentzian fit
parameters. The measured PSD and their respective Lorentzian fits for the herein used
cantilevers is shown in Figure 3.11 where it is clear that the D-type cantilevers have a
significantly lower stiffness than the A-type ones. This method provides, thus, simple in situ
means of obtaining the normal stiffness of the probes and it does not require any contact of the
cantilevers’ tips with a surface, thus assuring the preservation of the initial sharpness of the tips.

The obtained bending stiffness of the SNL — 10D probe is reported in Table 3.2.

Table 3.1 Measured dimensions of the Bruker SNL — 10 SPM probes with the respective
dispersions.

SNL-10A SNL-10D

Avg. + 0o Avg. + o

al[°] 6037 486 6029 5.6
d[um] 2964 048 229 051
hlum]  4.87 012 471  0.14

?[°] 27.1 044 2625 081
L'[um] 1225 034 21417 0.77
Li[um] 59.43 063 15058 0.5
t [um] 0.62 007 055  0.03
wlum] 11777 123 20159 1.1
x[um]  5.23 007 508 017
y[um]  3.72 014 358  0.11

The lateral calibration of the probes presents the most important aspects of quantitative

friction force microscopy. Methods of calibrating the lateral stiffness can be divided into the
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following main categories [59], [93], [119]:

s calibration using a calibration sample,

s calibration by adding a known mass to the cantilever,

s calibration by using a reference probe with a known stiffness, and

s calibration by determining the stiffness of the probe using numerical methods.

Each of these methods have certain shortcomings in the respective repeatability and
accuracy, especially considering the small dimensions of the probes with the corresponding

deviations evidenced in Table 3.1.
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Figure 3.11 Power spectral density (PSD) of cantilevers' response in ambient conditions and

the respective Lorentzian fits for A type (a), and D-type probes (b).

A combination of different calibration methods is used in this work, i.e., the calibration is
performed by using a calibration sample TGF11, where the input stiffness needed for the
respective calculations are based on results attained by employing the analytical method of
parallel beam approximations (PBA), and via finite element (FE) calculations performed in
Ansys®. The dimensions of the probes used in the PBA and FE calculations are, in turn, those
obtained from the previously obtained SEM images.

The determination of the factor correlating the lateral voltage signal on the PSPD to forces
related to the torsional stiffness ki, i.e., to forces inducing probes’ torsion, is hence conducted
by employing calibrated TGF11 arrays of trapezoidal gratings in a monocrystalline Si substrate
along the (111) crystallographic planes (Figure 3.12) [114].
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Figure 3.12 Scheme (a) [128], and factual topology of the TGF11 calibration grating (b)

In Figure 3.13 are then schematically represented the forces acting on the tip of the probes
while they are scanned along the TGF11 sample (u and d indices stand for upward and
downward movement, respectively), i.e., the normal load Fn, the traction (transversal) load Fr,
the adhesive forces Fa (see also Section 3.5.2), the friction force Fr and the reactive normal
force Fn. The reactive forces Fa, Fr and F, induce also a torsional torque M on the cantilever
bearing the tip. Considering the resulting force and torque equilibria about the contact point
between the tip and the surface as explained in [164], as well as the torsional stiffness of the
probes attained via the calculations, a relation between the PSPD voltage reading induced by

the torsion of the probe, and the friction force Fs can finally be obtained.

Downward

Figure 3.13 Balance of forces acting on probe’s tip during the measurements [128].

The respective calculations are then conducted considering 25 permutations of variable
normal and transversal loads in the range from 10 to 100 nN. The sensitivity analysis of the
FEM results, i.e., the study of the influence of the geometric parameters on the transversal
deformation of the probes shows that, as expected, the thickness of the probes has the highest
influence on the resulting deformations. In the herein considered case the described procedure

on the TGF11 sample allowed, hence, determining that for the Bruker SNL — 10D probes the
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correlation factor « linking Fr to the SPM voltages resulting from the LFM measurements is
a=0.035 uN/V. The thus obtained values of the flexural stiffness ky and of the torsional
stiffness k; for the SNL-10D cantilever, are reported in Table 3.2, allows evidencing that the
uncertainty of the values of the dimensions of the probe as obtained from the SEM
measurements, has a marked (up to roughly £ 15 %) influence on the determined stiffness

values.

Table 3.2 Determined bending and torsional stiffness of the Bruker SNL — 10D probes [128].

TT™M PBA FE
ko [N'm™] 0.086 0.056 + 12 % 0.098 + 8 %
ki [Nm-rad™] 79.37+16 % 9259+ 11 %

3.5.2. Measurement of the Adhesion Forces

Since the measurements performed in this work are conducted in air (habitual technological
conditions), the friction force Fs is dependent, as evidenced above in relation to Figure 3.13, on
the adhesion Fa between the probe and the samples, that is superimposed to the normal loads
Fn inducing the friction forces, on surface roughness, but also on the contact area of the probe
with the sample [38], [141], [181]. The samples are therefore analysed on the SPM device by
employing conventional contact-mode atomic force microscopy (AFM) to obtain the respective
surface roughness and determine the adhesion forces.

The adhesive forces are hence determined here from the force vs. approaching distance
curves that show these interactions between probe’s tip and the surface of the sample (Figure
3.14). In fact, there are five distinct characteristic regions on these curves [18], [128]:

s during phase 1 the tip approaches the surface of the sample,

% in point 2 the tip is adhesively attracted to the surface and makes contact with it,

s a further lowering of the probe in region 3 induces a rising of the force exerted through

the cantilever onto the sample up to a predetermined maximal value,

s the retraction of the tip, with the consequent lowering of the force exerted on the sample,

is then initiated but, due to adhesion, the tip stays in contact with the sample until 4,

s when the pull-out force becomes greater than the adhesion force, the tip suddenly springs

back to zero force deflection (point 5), while the difference of the forces in point 4 and

5 is the value of the sought adhesive force Fa.
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Figure 3.14 Schematic representation of a typical force-distance curve [17], [128].

The adhesive force values are hence determined for all the samples used in the herein
performed study, as well as in all the respective measurement points. In this framework,
adhesion obviously depends a lot on the state of the surface layer, which, in turn, changes with
temperature [6], [10], [17], [92]. A through study of the dependence of Fa on temperature, on
the same TGF11 grating used above for the calibration of the stiffness of the probes, is hence
performed, while the temperature of the samples is monitored by employing a K-type
thermocouple connected to the Arduino controller and logged to the SPM PC, used also to
monitor the stabilisation of surface temperature before the LFM measurements. Fa values are
thus attained from the conventionally used force vs. tip distance curves of Figure 3.14. It is
important to stress here especially the fact that the total force acting on the sample is hence the
sum of Fn and Fa (the relevance of this statement will be thoroughly addressed in later
chapters). By using the Peak Force Quantitative Nanomechanical Mapping (PF-QNM®)
measurement mode of the used Bruker’s SPM device, the variability of adhesion with
temperature is thus determined, while for each measurement point, i.e., for each temperature
value, the lateral calibration procedure explained in the above Section 3.5.1 is repeated,
resulting in the change of the respective correlation factor (« (uN/V)) for each of the 50 sample
points determined via the DoE-CVT approach. The thus obtained results on the calibration
TGF11 grating, depicted in Figure 3.15, allow establishing a marked variation of Fa with
temperature. The respective results in terms of the variation of the correlation factors are, in
turn, shown in Figure 3.16 where the variability of the correlation factors is shown in the whole
experimental design space, alongside with statistics on the obtained factors on Figure 3.16a
which presents a distribution of variability of coefficient « alongside a box-and-whisker plot
(denoting distribution’s descriptive statistics). It is evident here that a variation of the

temperature in the range from 20 °C to 80 °C induces a variation of the correlation factor «
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from 0.0068 up to 0.071 uN/V, i.e., a whole order of magnitude.
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Figure 3.15 Measured values of the adhesion force Fa on the TGF11 calibration grating vs.

temperature 9 [128].
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Figure 3.16 Statistics on the corrected correlation factors « (a), and colour-coded values of «

in the experimental design space defined by the CVT points (b).

The experimentally obtained variability of the Fa with temperature for all the considered
thin-film samples is, in turn, shown in Figure 3.17 where, for clarity reasons, the error bars are
omitted. (the respective complete data sets are given in Appendix B). The depicted data allow
evidencing that in all cases the adhesion force variability shows similar trends as for the

calibration sample TGF11.
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Figure 3.17 Mean adhesion force Fa variability vs. temperature for the considered thin-film

samples in the DoE determined experimental points [128].
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Figure 3.18 Geometry of a capillary condensation water bridge — meniscus.

It is important to note here also that, in nanoscale contacts in air, the capillary condensation
of water vapour present in air occurs at the singe-asperity contacts of two solid bodies, building
a water neck surrounding the contact itself (Figure 3.18) [75], [85]. At thermodynamic
equilibrium, the total curvature of the meniscus is hence determined by the amount of water
condensed at the contact. The size of the meniscus depends also on the wetting properties of
the two bodies in contact. This effects, inducing the interactions of the tips of the probe with
the sample are, in fact, those visible in the above SPM measurements of adhesion [26], [38],
[42], [181] (see in this regard also Chapter 5 below). Humidity is thus also monitored separately
and controlled during the measurements, with average obtained values of the relative humidity

of 50 % (+ 1 %) and of air temperature, monitored by using the Bruker Thermal Applications
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Controller (TAC), of 21 °C (+ 0.1 °C). Relative humidity and temperature inside the SPM
apparatus enclosure are additionally monitored and logged via a humidity and temperature
sensor Texas Instruments HDC1080 (RH accuracy +2%, temp. accuracy +0.2°C) coupled to an

Arduino controller.

3.5.3. Temperature Effects on the Variability of the Normal Force

With respect to the flexural stiffness kp, it is to be noted here that, since temperature is
considered as one of the studied influencing parameters, the rise of the temperature of the set-
up induces inevitable thermal dilatations of the samples [52], [92], of the piezoelectric actuators
used to move the probes, as well as of the probes themselves (Figure 3.19). These thermal
effects induce, therefore, a necessity to change the set-point, i.e., to vary the necessary
elongation of the vertical actuator needed to maintain a determined (required) value of the
normal force Fn, maintaining thus a constant flexural deflection reading on the photodetector
of the SPM device during the LFM measurements. Based on a thorough study of this issue
[128], where the temperature of the samples is monitored again by employing a K-type
thermocouple connected to the Arduino controller, it is hence determined that for lower
temperature values the set-points are positive, they have a tendency towards 0 at temperatures
of roughly around 40 °C and then, for higher temperatures, the set-points tend to assume
negative values (cf. Figure 3.19). These variations have thus been considered in setting-up each
measurement. On the other hand, by employing the Bruker Thermal Applications Controller
(TAC) as a part of the AFM system, the set sample temperature values (variable across the set
of experiments, but constant in each of them) is maintained stable long enough to achieve
consistent and steady-state experimental conditions [128].

Piezo
Thermal /

expansion v~

i\\\\ Cantilever
. Sample on
Heating * * + + * substrate

Figure 3.19 Influence of thermal expansion on the necessity to correct the set-point, i.e.,

maintain the required value of the normal force Fn [128].

The calibration of the flexural and torsional stiffness of the used probes, the measurement of
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the variation of the adhesive forces and of the needed set-point with temperature, and of the
respective correlation factors for determining the friction force from the measured LFM voltage
signals, described above in Sections 3.5.1. and 3.5.2., is thus successfully accomplished, which
allows the quantitative measurements of the frictional forces Fr to be performed. Prior to these,

considerations of the influence of tip wear on the measurements have also to be made.

3.6. Tip Wear and its Influence on Adhesion

Special attention is dedicated in this work also to the study of the wear of the tip of the probe
itself, which has a marked influence on adhesion. In fact, as a consequence of nanoscale wear
due to asperity contacts and atomic attrition between the probes and the samples, the geometry
of the apex of probes’ tips changes [14], [41], [97], [185], inducing a negative influence on the
resolution of the SPM imaging of the samples [39], [180], and a significant change of the
adhesive forces Fa [16], [33], [137].

Generally, the geometry of probes’ tips can be determined by using methods that involve
manufacturer’s specifications (factory-calibrated tips), SEM or other imaging techniques,
and/or by employing tip SPM scans on specially devised titanium (Ti) tip characterizing

samples coupled to deconvolution algorithms [30], [158].

— 1pm UNIRI 12/21/2016 - 100nm UNIRI 2/21/2017
SEM

x12,000 5.0kV LED

(a) (b)
Figure 3.20 SEM micrographs of a fresh SPM tip (a) and of a tip’s apex which was used for
200 LFM measurements (b) [128].

WD 10.0mm| x35,000 5.0kV LED SEM WD 10.0mm

The nominal specifications that the manufacturers provide in terms of tips’ geometry have
to be taken with a degree of caution, because of the variability in the production batches (cf.

also Table 3.1), and because tips’ wear itself. In this thesis the methods of using SEM images
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and tip characterization samples are thus adopted [128]. SEM micrographs of a new tip apex
and of the same tip after more than 200 LFM scans, obtained again by using the FE-SEM device,
are hence shown in Figure 3.20, allowing to clearly expose the marked wear of the tip. The
images are used to measure the radius r of tips’ apex by best-fitting a circle through the image
of the tip. In the particular example of Figure 3.20, the obtained radius of the new and of the
worn tip are, respectively, 32 and 95 nm [128].

Based, in turn, on SPM scans on a standard Bruker’s titanium characterizing sample [30],
whose surface is specifically adapted to the aim of deducing the tip conditions, the so-called
“tip evaluation” tool in the Nanoscope software, coupled to an in-house developed MATLAB®
code, is then used to generate a model of the tip. The tip evaluation procedure [45], [97], [168]
involves in this case analysis of the local peaks in a topographic image, and the respective slopes
in all directions, refining a three-dimensional (3D) tip model — thus allowing to deduce the
minimal tip sharpness. An estimate of maximal tip’s width in cross-sections at two distinct
distances (ETD 1 and EDT 2) from its apex can thus be obtained, allowing to determine also
the value of an “aspect ratio”, defined as the ratio of the major and minor semi-axes of tip’s
cross section in ETD 1 and ETD 2. Inputting this data into the MATLAB® deconvolution
algorithm [168], the estimated truncated cone-shaped geometry of the probe is obtained [128].
From the latter, probe’s major tip axis in section ETD 1, in the vicinity of probe’s apex, IS
finally found [128]. In the herein considered case, this estimated dimension dest of the virginal
tip’s apex is therefore approximated with a value of 28.0 nm, whereas that of the worn tip
increases to 75.8 nm (Table 3.3) [128].

Table 3.3 Results of the determination of tip’s apex radius [128].

Parameter Fresh tip Worn tip
ETD 1 31.9 nm 54.1 nm
ETD 1, Aspect Ratio 0.91 0.67
ETD 2 72.9 nm 138.8 nm
ETD 2, Aspect Ratio 0.76 1.00
est 28.0 nm 75.8 nm

Measurements of the dependence of adhesion on wear are hence conducted by using a fresh
tip on an Al,O3 sample that has high abrasive properties. Contact-mode scans on 500 x 500 nm?
surfaces, with 512 scan lines (i.e., double with respect to the number of scans used in the actual

LFM measurements), are hence performed at the maximal considered scan speed of
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v =500 nm/s, while maintaining 4= 20 °C- 256,000 nm are thus covered in a single scan while
100 scans are made in total, so that the cumulative scan distance is 25.6 mm [128]. For the
maximal considered Fn value Fn = 150 nN, in Figure 3.21 are hence shown the dependences
of the values of the estimated major tip axis dest, Of the contact pressure pc, and of the adhesive
forces Fa, attained from the conventionally used force vs. tip distance curves after each Al>O3
sample scan, versus the scan distance dscan. The exerted contact pressure variability was
calculated for each point to prove that during the measurements the contact itself is in the elastic
regime, i.e., that there are no plastic deformations of the sample. This is also confirmed via
separate detailed scans employing the soft tapping mode [17] (used forces are of the order of
pN) that allowed attaining 3D topology scan results showing no surface deformations. It could
hence be concluded that the exerted maximal contact pressure pc of 590 MPa on the sample
with the tip in its sharpest state is far below the Al>Og thin films’ yield strength of 5177 + 644
MPa [115] [128].
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Figure 3.21 Wear of the tip on an Al.O3 sample for Fn = 150 nN: tip dimension dest (left axis),

adhesion Fa (right axis) and resulting contact pressure p¢ (far right axis) [128].

The values of adhesion will, obviously, increase with increasing tip wear, In terms of the
resulting effect of adhesion on the uncertainty of the measurements, the results shown in Figure
3.21 allow establishing that, the planned 200 LFM measurements with 256 scan lines in each
of them would have a comparable effect to that of the uncertainty introduced by the dispersion
of the stiffness of the probes as determined in Section 3.5.1. Bearing therefore in mind the

necessity to have reliable measurements, but at the same time also the need to minimise the
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usage of fresh tips and the respective costs, a sufficiently large safety margin is introduced. A
new tip is thus used in the subsequent measurements of the friction force Fr for no more than
50 LFM measurements cycles, which corresponds to a travel distance limited to 6 mm. As
evident in Figure 3.21 this induces a change of Fa limited to 1.5 nN (i.e. 1 % of the used Fn);
the introduced variability of the applied force is consequently also limited to roughly 1 %, i.e.,
it is markedly smaller than the uncertainty introduced by the variability of the stiffness of the
used probes [128]. This important conclusion allows, hence, enhancing the accuracy of the
subsequently performed Fr measurements.

In Chapter 3 not only the experimental points are determined via elaborated DoE procedures,
but also all the calibration and measurement conditions characterisation values are successfully
determined, allowing to evidence the limits of uncertainty inherent in the planned LFM
measurements but also creating the preconditions for consequent and structured experimental
determination of the values of the friction force Fr in the nanometric domain, that will be

described in Chapter 4.
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4. Results of Experimental
Measurements and their First-order
Analysis

All of the procedures described in Chapter 3 allow the actual LFM measurements on the
prepared samples to be performed (cf. some examples of the obtained topologies shown in
Figure 4.1).2 Preliminary measurements on the considered thin-film are made first in
conventional SPM contact-mode measurement configuration, i.e., by measuring the topography
of the samples. From the thus obtained results, it is evident (Table 4.2) that the used samples
are characterised by small values of the arithmetic average surface roughness Ra, the RMS
roughness Rq and the maximum height Rz, whereas the dispersion of these values in the

performed repetitive measurements is rather small [128].

300.0 pm

-300.0 pm

100.0 nm 100.0 nm

(a) (b)
Figure 4.1 Sample surface topologies obtained via LFM measurements on the TiOz thin-film
(a) and on the MoS> sample (b).

LFM measurements are then finally performed with the aim of attaining data relative to the
friction forces Fr in the nanometric domain and their variation in the multidimensional space
given by the considered influencing parameters and their ranges of variability. The
measurements are carried out in the DOE-CVT determined measurement points (cf. again
Appendix A) the order of ascending temperature, with a temperature stabilization period, after

the required temperature is achieved, of 30 minutes.

2 Part of the work described in this chapter is again based, partly directly derived and cited from a recent
publication of the author of the thesis and his collaborators in a peer-reviewed scientific paper [128], which
was produced and published as part of the obligations foreseen in the curriculum of the doctoral study of the
Faculty of Engineering of the University of Rijeka, Croatia.
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Table 4.1 Surface roughness of the analysed thin-film samples [128].

Ra[nm] +o[nm] Rq[nm] =+o[nm] Rz[nm] =+ o[nm]

MoS,  8.04 1.3 10.18 1.8 15.0 2.3
Al,Os 124 2.6 14.6 2.9 16.05 3.2
TiO: 6.3 1.7 8.8 2.3 9.8 2.8
Al 4.2 1.35 7.1 2.45 7.9 2.3
SS 8.58 0.86 10.5 1.32 14.3 1.7

In Figure 4.2 and Figure 4.3 are thus depicted the Fr values obtained for the considered thin-
film samples synthesized by using, respectively, the ALD and PLD technologies,. The points
in the figures represent the mean Fr values in repetitive measurements, scaled according to the
given colour-coding of the shown legends, while the respective complete measurement datasets
are reported in Appendix B. In the left part of the figures are herein depicted the conventional
values of Fr generally reported in literature, i.e., those when the average correlation factor o
linking Fr to the SPM voltages, resulting from the LFM measurements and neglecting the
variation of the adhesive force Fa with temperature, is considered. In the right part of the figures
are, in turn, depicted the dependencies of Fr on the considered influencing parameters when the
true total force acting on the samples (i.e., Fn + Fa), and influencing the torsion of the probes,
is considered. In the latter case, the shown Fr values in each sample point account also for the
Fa dependency on temperature .9, i.e., the variability of the correlation factors as determined in
the above Section 3.5 [128].

From the data reported in Figure 4.2 and Figure 4.3 it can be inferred that the scatter of the
obtained Fr values attained by considering a constant uN/V LFM correlation factor do not allow
appreciating the real peculiarities of the physical dependence of nanometric friction on its main
influencing parameters. What is more, it would seem that, in general, in this case Fr is largest
for the highest considered temperatures. When, however, the influence of the variability of Fa
on $and the resulting change of the correlation factor is considered, the similitude of the F¢
value trends for all the considered thin films becomes clearer. In fact, in this case the highest F+
values start clustering for temperatures ¢ at around 40 °C (cf. the above treatise in Section
3.5.2), for the highest considered applied loads Fn + Fa and, tendentially, for lower to mid-
range considered velocities v [128].
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Figure 4.2 Colour-coded distribution of experimentally determined nanometric Ff values on 50
measurement points for the Al>O3 (a) and TiO2 (b) samples obtained via ALD vs. the considered
influencing parameters. Left and right columns present Fr values obtained without the

calibration factor correction, and with calibration factor correction, respectively [128].

It is to be noted also that in all considered cases the depicted mean Fr values are characterised
by a high stochastic dispersion (up to =+ 15 %), which, considering also the number of
influencing parameters, complicates the development of a mathematical model that would
allow correlating the influencing parameters to the respective Fr values. In fact, polynomial
fitting of the obtained results via the often-used multidimensional interpolation algorithms
yields a poor fit with the best coefficients of determination limited to about R? = 0.1 [128].

To gain insight into the sensitivity of the Fr values on the considered influencing parameters,
statistical analysis is hence used as benchmark and as guidelines for the subsequently planned
advanced numerical analyses [128]. Correlation matrices obtained by using Pearson’s product-

moment correlation (PPMC) [106] on the large set of acquired Fr data are hence summarised in
Table 4.2 and Table 4.3.
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Figure 4.3 Colour-coded distribution of experimentally determined nanometric Fs values on 50
measurement points for the Al (a), MoS: (b) and SS (c) samples obtained via PLD vs. the
influencing parameters. Left and right columns present Fs values obtained without the

calibration factor correction, and with calibration factor correction, respectively [128].
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Generally, the PPMCs are calculated as:

n

2. (%=%)(y;-Y)

= (4.1)

pxy_Ji(xi—xf\/i(yi—vf

i=1 i=1

where x; and y; are the pairwise variables to be correlated, while X and Y are their respective

mean values in the whole set of observations n. In this equation the numerator represents the
covariance of the two variables, while the denominator is a multiple of square roots of the
variance of each variable. In PPMC a correlation coefficient of 1 or -1 represents then a perfect
(linear) correlation of positive (proportional) or negative (inversely proportional) dependence
of the dependent variable on the considered influencing parameter, with higher absolute values
indicating a stronger dependence. A zero (or near-zero) value indicates, in turn, that there is no
correlation.

In Table 4.2 and Table 4.3 both the correlations considering the exerted normal force Fn
alone, as well as those considering the total force Fn + Fa acting on the samples, in both cases
with adhesion-corrected calibration factors, are shown. It can thus be seen that, for all the
considered thin-film sample materials, the influence of Fn on the nanoscale friction force Fr has
a positive correlation in the range from, respectively, ca. 0.4 for Al and Al>O3, to ca. 0.5 for
TiO, ca. 0.6 for the MoS samples and ca. 0.35 for the SS samples. When the total force Fn +
Fa acting on the samples is considered, the respective correlation coefficients change, however,
to roughly 0.45 for Al and Al20s3, 0.4 for TiO., 0.6 for MoS; and 0.4 for SS [128].

Although the general trends observed in relation to Figure 4.2 and Figure 4.3 are thus
confirmed, i.e., Fs clearly rises with increasing Fn + Fa values, it is interesting to note especially
the peculiar effect of the adhesion force Fa for the different considered sample materials. In
fact (cf. also the respective rows related to Fa in Table 4.2 and Table 4.3), in the case of Al,
Al;Ozand SS samples, Fa has a relatively high positive influence on Fy, i.e., arise of Fa induces
an increase of the total contact load and hence a rise of the friction force Fr. On the other hand,
however, in the case of the TiO2 and MoS; samples, there is a negative influence of Fa on Fy,
with the respective correlation factors of -0.62 and -0.27, which implies diminishing Fr values
for increasing Fa values. This fact not only confirms once more the postulated complex nature
of adhesion, induced by multivariate phenomena due to atomic interactions and surface
energies, but it could also, perhaps, indicate an occurrence of a possible lubricating effect on

the surfaces of the TiO2 and MoS; samples that induces the observed partial decrease of Fr with

45



Marko Per¢i¢: Characterization of Parameters Influencing Friction in the Nanometric Domain

increasing Fa. In any case it seems that, for the nanoscale contact of the Si tip with the TiO>
and MoS; samples, adhesion manifests itself as a lubricating effect. What is more, as

extensively elaborated above, adhesion is also closely related to temperature [128].

Table 4.2 Matrices of correlation coefficients for the influencing parameters on the nanometric

Fs values in the DOE-CVT measurement points for ALD synthesized samples [128].

v Fn v Fr Fa Fnt+Fa
Vv 1
Fn 0.032 1
ALOs G 0.028 0.079 1
Fr 0.0023 0.38 -0.64 1
Fa -0.068 -0.035 -0.83 0.48 1
Fn+Fa 0.025 / -0.015 0.44 / 1
v 1
Fn 0.032 1
) v 0.028 0.079 1
TiO2
Fr 0.014 0.48 0.47 1
Fa -0.068 -0.046 -0.85 -0.62 1
FntFa 0.022 / -0.048 0.386 / 1

When, in turn, the correlation of nanoscale friction Fr with temperature 4 is observed,
relatively high negative correlation values of -0.71, -0.64 and -0,57 are attained for the Al,
Al>O3 and SS samples respectively, i.e., once more a physio-chemical similitude of these films
is confirmed, which, in this case, results in a decrease of Fr for rising temperatures. Referring
then to the above Figure 4.2 and Figure 4.3, this would imply also that a rising temperature
prompts a relative decrease of Fa (i.e., of the respective total load Fn + Fa acting on the
samples), thus causing the lowering influence on Fr as well. In the case of the TiO. sample,
however, a positive (0.47) correlation of Fr with 9 is obtained instead. This could be due to
exactly an opposite effect with respect to that hypothesized for Al and Al2Os3, i.e., that in this
case the rise of 9, inducing a relative decrease of Fa, combined with the earlier-discussed
negative correlation of Fa on Fy, induces a resulting increase of Fs (i.e., a decrease of the
favourable lubricating effect). The MoS, sample shows, finally, a negligible (0.06) correlation

between Fr and temperature $[128].
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Table 4.3 Matrices of correlation coefficients for the influencing parameters on the nanometric
Fr values in the DoE-CVT measurement points for PLD synthesized samples [128]

v Fn 4 F+ Fa Fn+FaA
v 1
Fn 0.032 1
9 0.028 0.079 1
Al
Fs 0.014 0.40 -0.71 1
Fa -0.053 -0.05 -0.86 0.44 1
FntFA 0.025 / -0.043 0.46 / 1
v 1
Fn 0.032 1
9 0.028 0.079 1
MoS;
F+ -0.056 0.62 0.061 1
Fa -0.071 -0.056 -0.84 -0.27 1
Fn+Fa 0.024 / -0.017 0.59 / 1
v 1
Fn 0.032 1
9 0.028 0.079 1
SS
F¢ 0.018 0.36 -0.57 1
Fa -0.060 -0.048 -0.87 0.26 1
Fn+HFA 0.025 / -0.026 0.39 / 1

When, referring once more to, the influence of sliding velocity v on nanoscale friction Fs is
finally considered, it becomes evident that, for all the considered thin-films, and contrary to the
known effects on the macro- and meso-scales, at the nanoscale, and in the considered velocity
regime, there is only a negligible correlation of Fr with v, with the respective correlation
coefficients being in the 10 to 10~ range. Since in recent literature [122], [178] it is reported
that, at the nanoscale, the influence of v on F¢ is highly dependent on the magnitude of sliding
velocity, it is evident that, in the herein considered velocity range (up to 500 nm/s), the effect
of v on F, especially when related to the effects induced by the other considered influencing
parameters (variable loads (Fn or, respectively, Fn + Fa) or temperatures ), is indeed
negligible [128].

All the considered effects are summarised for an easier overview in Table 4.4, where for all
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the analysed samples the trends of the effects of all the studied influencing parameters on the
value of the nanoscale friction force Fr are given. The + and - signs indicate here, respectively,
an increase or a decrease of the Fr values depending on the variation of the corresponding
influencing parameter, while a “0” sign indicates no meaningful correlation. The value of the

respective correlation factors is, in turn, shown in parentheses [128].

Table 4.4 Summary of the effects of the influencing parameters on the Fr value for the analysed

thin-film samples in the DoE-CVT measurement points [128].

Fn Fa FntFa Vv 9
+ + + 0 -
Al>O3
(0.38) (0.48) (0.44) (0.0023) (-0.64)
+ - + 0 +
TiO>
(0.48) (-0.62) (0.39) (0.014) (0.47)
Al + + + 0 -
(0.40) (0.44) (0.46) (0.014) (-0.71)
+ - + 0 0
MoS2
(0.62) (-0.27) (0.59) (-0.056) (0.061)
+ + + 0 -

(0.36)  (0.26)  (0.39) (0.018)  (-0.57)

As stated above, however, the correlations shown in the Table 4.2 and Table 4.3, despite
providing important insights, are just first-order linear statistical approximations of the
generalised trends of the influence of the studied dependence of nanoscale friction in the
multidimensional space defined by the considered process parameters. The full potential of the
structured methodology proposed in the thesis will be appreciated only when the obtained
experimental data are analysed via more elaborated recently developed nonlinear numerical
tools enabling a concurrent consideration of contributions of a large number of parameters, i.e.,
those allowing to determine the complete set of correlation factors that enable establishing the
respective functional dependencies. This is the subject of study described in the following two

chapters.
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5. Development of a Predictive Model of
Nanoscale Friction

The results obtained experimentally, and thoroughly described in Chapter 4, are analysed in
this part of the work, as depicted in Figure 5.1, by using state-of-the-art machine learning (ML)
and genetic programming (GP) numerical methods to obtain the predictive models linking the
process variables to the value of nanometric friction. In this frame not only the nanotribological
characteristics of the considered thin-film samples, but the respective effects due to adhesion
forces are, once more, thoroughly discussed. These insights provide a foundation for an in-
depth understanding of the nanotribological behaviour of each of the analysed samples in the
considered range of values of the influencing parameters and provide means for the quantitative

and qualitative characterization of the influence of each of these influences.

Model of
nanoscale friction

v

Experimental data
) R

Machine learning Genetic programming

v v

Symbolic regression
(ALPS, GE, MG...)

MLP, RF, SVR...

¥

Performance metrics on test data
(MAE, RMSE, R?, model size...)

v

Simplest and best performing
predictive model

Figure 5.1 Numerical procedure for the development of a predictive model of nanoscale

friction.

In order to fully characterize the concurrent effects of observed variable parameters on

nanoscale friction and discover further the independent and synergetic effects of each variable,
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it is important to achieve a mathematical form of a relationship between the dependent variable
(Ff) and multiple independent variables (v, Fn and ). The process of estimating this
relationship in the mathematical form (a regression model) is commonly known as a regression
analysis [49], denoting a group of mathematical methods, which provide not only a
mathematical description of the analysed data but also (more importantly) the prediction of
dependent variable with arbitrary input values of independent variables [49].

Preliminary analyses of obtained experimental data using common regression methods, i.e.,
linear, nonlinear, multivariate regression, etc., yielded poor results in describing the obtained
experimental data, and even weaker predictive performance. This is due to a complex nature of
the phenomena itself, but also, due to a relatively sparse amount of data available from each
measurement (50 data points), whose availability is hindered by extremely complex and time-
consuming experimental methodology. Contemporary methods, employed in the computer
science branch, namely, data science, consisting of data mining, machine learning (ML) and
artificial intelligence (Al), are often used in complex and/or large data analysis [188]. The
process of data mining is used to extract useful (insightful) information from a bulk of observed
data, thus, the result of data mining is not data, but discovery of patterns and general knowledge
which is impossible for a human analyst to achieve due to complex relationships or the sheer
amount of data [65]. This approach requires interdisciplinary use of machine learning and/or
artificial intelligence algorithms in order to provide the sought insights. Methods used in this
work comprise of multiple machine learning algorithms, and artificial intelligence methods in
the form of genetic programming (GP) algorithms. Generally, machine learning algorithms for
regression problems provide a so-called black-box solution which gives predictive results but,
unfortunately, does not give any functional mathematical form of the underlying relationships
in the data [65], [84], [188]. These methods are used in the context of data mining for obtaining
important insights into the analysed variable space through visualization analyses, providing
knowledge for further studies. Used machine learning algorithms in this work are additive
regression, stacking and bagging classifiers, lazy algorithms, multi-layer perceptron, support
vector machines, decision trees and forest ensembles [21], [84], [189]. All of them were used
to develop models by data preparation, training the algorithms with the data, and optimizing
each of their hyper-parameters, in order to develop the models, whose best obtained results are
presented in the following chapters.

Furthermore, besides conventional machine learning methods, artificial intelligence methods

are also employed in the form of genetic programming [139]. This group of methods provides
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an evolutionary approach to development of computer programs or mathematical expressions
which are, in comparison to ML-derived black-box models, directly usable and understandable
by humans in mathematical or algorithmic form. This is the most valuable tool in the current
state-of-the-art of predictive methods [95] which has been thoroughly proven by most complex
problems in a wide variety of research and development [87], which will be thoroughly
addressed later in this chapter. The employed type of genetic programming in this work is
symbolic regression (SR) [21], [22], this method provides means for development of
mathematical expressions [147] (regression models) which describe the data they were trained
on with the best obtainable predictive performance, which is defined by different performance
metrics.

A proper assessment and validation of the derived model(s) is also addressed. For this
purpose, the results of the numerical analyses are assessed via a comparative statistical
validation of each of the used algorithms, and separately for the employed machine learning
regression and symbolic regression methods. The best performing model’s predictive

performance is, finally, thoroughly scrutinized.

5.1. Test Dataset — Experimental Measurements

Separately performed experimental measurements, are intended to provide a testing dataset
for the developed models. These measurements present an un-seen dataset whose results the
developed model needs to predict in the best possible way. This dataset provides a benchmark
for all the developed models, enabling a thorough testing for their predictive performance. Each
model’s predictive performance was scrutinized on predictions of Fr from the input variables
of this testing dataset. Given the fact that these measurements are performed on samples that
were not dried prior to the measurements — yielding, hence, realistic habitual conditions, they
provide, moreover, a more difficult predictive challenge for the used advanced numerical
models, presenting a realistic scenario in which the model must provide good predictions. These
measurements were conducted using the described methodology from the earlier chapters,
including the described calibration factor corrections.

Conventionally in ML methods, the whole available dataset is divided into subdivisions
comprising of the main training data, validation data, and testing data [84]. Main training data
provides input information for the learning (training) process and requires the largest available
amount of data (theoretically if an algorithm could be trained on all possible outcomes, it would

have perfect predictive performance), validation data is required for optimization of algorithms’
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hyper parameters by testing the learned model on this set after each training iteration, and
finally, the testing dataset which is completely left out of any interaction with the algorithm
during the training phase, and is only used as an independent, realistic presentation of the real
world case scenario for testing the developed model’s performance [65], [84]. Generally, the
ratios between these subdivisions is used as 2/3 of the whole dataset for training, and 1/3 for
validation and testing datasets [189]. Thus, the adopted size of the test dataset is chosen to be
15 measurement points with 5 repetitions for each of the 5 analysed thin film samples,
representing roughly 1/3 of the main, CVT based dataset, bearing in mind the experimental
complexities and the time-consuming nature of the experimental procedure.

The random number generator (Monte Carlo - MC) [57] is used as implemented in GoSumD
[2] for a simple random sampling in the boundaries of the considered variable influencing
parameters Fy, v and 9. The MC based measurement points are provided in Appendix C. A
simple random sample is a subset of a statistical population in which each member of the subset
has an equal probability of being chosen [90]. Test dataset measurements are thus conducted
by using the described experimental methodology with the adhesion-corrected calibration
factor o that takes into account the variability of Fa as determined on the TGF11 calibration
sample (cf. Figure 3.12a).

To test the experimental and modelling prediction hypotheses, the measurements are made
on different batches of equivalent samples obtained by the described synthetizing processes and
are meant to present as much as possible a realistic state of the surfaces of the used samples in
air, i.e., without subjecting them to a drying process before the measurements as was done in
the previously described experiments. As depicted in Figure 5.2a, the temperature variability
of adhesion force Fa on the calibration sample TGF11 is again evident, and comparable to
results obtained earlier, thus confirming the described need for calibration factor correction.
More interestingly, in Figure 5.2b, are depicted adhesion force Fa measurements for all
samples, where for clarity reasons the error bars are omitted (the complete acquired dataset is
available in Appendix D, the effects of different staring conditions (not dried samples), are
hence clearly visible for each of the thin-film samples in considerably less similar absolute
values of the Fa when compared to the CVT Fa measurements. It can be appreciated here also
that the Fa values are the highest (up to of 90 nN) for the TiO. and Al.O3s samples. Compare in
this regard the values on Figure 5.2b with those reported in Figure 3.17, where the measured
Fa values on all the used samples are in the ~ 19 nN range. In fact, while MoS2 shows similar

maximal adhesion force values of ~ 20 nN as observed in the CVT-based experiments, on the
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SS sample are also obtained higher Fa values than in the previous measurements.

The occurrence of higher Favalues in the lower temperature range (i.e., that close to ambient
temperature) is most probably due to the water-vapour layer adsorbed on the surfaces of the
samples. On the other hand, the attained variation of the measured Fa values is then the result
of the different surface wetting properties. In fact, in the CVT-based measurements, before the
SPM experiments the samples are dried for a prolonged amount of time, hence stabilizing the
adsorbed water-vapour layer on the surfaces of the samples to a lower value, and consequently
all the samples showed similar Fa values in the whole temperature range. This observation is
in accordance also with the previously evidenced fact that the adhesive forces in the nanoscale
range are strongly dependent on the adsorbed vapour layer formed between the tip and the

sample (cf. Section 3.5.2).
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Figure 5.2 Measured Fa values for test dataset of experimental points on the TGF11 calibration

sample (a), and on all the analysed thin-film samples (b).

In any case, it can be concluded that, although starting at different values, the trends of
variability of the adhesion force with temperature is similar in both sets of measurements (CVT-
based and those considered in this MC-based test dataset). What is more, the adhesion force
measured on all the used samples in the herein considered experiments tends to stabilize for the
highest temperatures at a value of around 4 nN, equivalent value of which is consistent with the
previous (CVT-based) experimental results, and supports the theory that the adsorbed water-
vapour menisci on the surfaces of the samples are minimized with higher temperatures.

The measured values of nanometric friction force F+ for all the thin-film samples in the MC-
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based test dataset are shown, incorporating again, adhesion variability, in Figure 5.3 (the
complete set of acquired data is available once more in Appendix D). The corresponding first-
order correlation values for the same test dataset measurements is, in turn, given in Table 5.1.
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Figure 5.3 Colour-coded distribution of experimentally determined nanometric Fr values for
the test dataset measurement points for the Al2Osz (a), TiO2 (b), Al (c), MoS; (d) and SS (e)
samples vs. the considered process parameters.
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In the shown Figure 5.3a are hence depicted the values of F for the Al,O3 sample, with
similar trends as in the case of the CVT measurements. The highest Fr values are concentrated
again for temperatures in the 40 to 50 °C range and for the highest Fn+Fa total load. It is, in
fact, evident that, due to higher adhesion in the lower temperature ranges, for all the samples
the points are shifted towards right (higher total loads). Higher velocities induce, in turn, again,
a diminishing effect on friction. The respective correlation coefficients for Al.Oz reported in
Table 5.1 allow evidencing interesting results for all the considered effects. In fact, the influence
of velocity has an impact of -0.12, when compared to that in the CVT case of 0.0023. The effect
of the total load is higher with the correlation value of 0.57 (the higher effect of Fa is evident —
see Figure 5.2b), while, when compared to previous measurements, the correlation coefficient

of temperature has an almost identic value of -0.69.

Table 5.1 Matrices of correlation coefficients for the influencing parameters on the nanometric
Fs values on the MC test dataset points for ALD samples.

\ I:N 19 Ff FA FN+FA
v 1
Fx 0.24 1
4 0.31 0.68 1
Al;O3
Fs -0.12 -0.03 -0.69 1
Fa -0.20 -0.59 -0.90 0.69 1
Vv 1
Fn 0.24 1
4 0.31 0.68 1
TiO»
Fs 0.24 0.80 0.63 1
Fa -0.28 -0.60 -0.94 -0.53 1
Fnt+Fa 0.09 / 0.05 0.64 / 1

The results for the TiO2 sample, shown in Figure 5.3b, show again higher values of Fr in the
high-load, mid temperature regime, but lower relative values for the lower temperatures, which
is consistent with the results obtained for this sample in the previous measurements. The
correlations show in this case a higher positive impact of velocity, temperature and the total
load (almost double the value with respect to that in the CVVT-based case, which is probably

due to higher adhesion than in the CVT measurements).
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The Al sample results (Figure 5.3c), show also similar trends with a prominent adhesion
shift of points, while the correlation factors, compared to those of the CVT-based analyses,
show a higher negative impact of velocity (-0.24), a very similar effect of temperature (-0.75),
and a significantly smaller influence of the total load, with a correlation coefficient of 0.29 (vs.
the previously established 0.46), which is hypothesized to be due to a lubricative effect.

Table 5.2 Matrices of correlation coefficients for the influencing parameters on the nanometric

Fr values on the MC test dataset points for PLD samples.

\' I:N l9 Ff FA FN+FA
v 1
Fn 0.24 1
9 0.31 0.68 1
Al
F+ -0.24 -0.15 -0.75 1
Fa -0.12 -0.62 -0.88 0.72 1
FntFEA 0.23 / 0.28 0.29 /
v 1
Fn 0.24 1
9 0.31 0.68 1
MoS;
F¢ 0.07 0.80 0.35 1
Fa -0.29 -0.65 -0.95 -0.42 1
FntFA 0.22 / 0.61 0.81 /
v 1
Fn 0.24 1
9 0.31 0.68 1
SS
F¢ -0.16 -0.13 -0.71 1
Fa -0.29 -0.68 -0.98 0.70 1
Fn+HFA 0.11 / 0.20 0.33 /

The MoS; sample’s Fr results shown in Figure 5.3d show the smallest adhesion induced shift
in the total load axis direction, due to the lowest manifested Fa values (Figure 5.2b). As before,
the influence of v is almost negligible (0.07), the effect of the total load is augmented to 0.81,
but still in the positive range, while the influence of temperature shifts to 0.35 (vs. the

correlation coefficient value of 0.061 in the CVT-measurements). Finally, the SS sample also
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demonstrates a similar behaviour (Figure 5.3e) and, in terms of the resulting correlations,
results, if compared to CVT-based data, in a slightly more negative effect of velocity, a very
similar correlation factor value for the total load (0.33 vs. 0.39), and a slightly bigger negative
influence of temperature (-0.71 vs. -0.57).

The correlation coefficient results, summarized in Table 5.3, allow evidencing the effect of
the variable adhesion forces on nanoscale friction, and, interestingly, despite the evidenced

differences, show also distinct regularities in the overall trends for the same thin-film samples.

Table 5.3 Summary of the effects of the influencing parameters on the Fs value for the used
thin-film samples in the MC-based test dataset.

Fn Fa FntFa Vv 4
+ + 0 -
Al>O3
(-0.03) (0.69) (0.57) (0.12) (-0.69)
+ - + + +
TiO2
(0.80)  (-053)  (0.64) (0.24) (0.63)
0 + + - -
(-0.15) (0.72) (0.29) (-0.24) (-0.75)
+ - + 0 +
MoS;
(0.80)  (-042)  (0.81) (0.07) (0.35)
0 + + 0 -
(-0.13) (0.70) (0.33) (-0.16) (0.71)

5.2. Data Preparation

Based on the analysis of large sets of training data, machine learning (ML) methods are a
class of numerical algorithms that allow revealing patterns, thus “learning” how to map the
respective inputs to outputs also on new sets of data applied to the same system, thus
“predicting” its behaviour [65], [84]. The relative weights pertaining to the parameters of the
model are initialized to small random values, and, in response to estimates of errors on the
training dataset, updated via an optimization algorithm [65], [188]. Given the use of small
weight values and the employment of the values of the errors between the predictions and the
expected values in the optimization process, the scale of inputs and outputs used to “train” the
model are an essential factor for the quality of the resulting method, since the scale of used

dataset(s) comprises type of data used (numeric discrete in this case) and their order of
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magnitude, i.e., the order of sliding velocity parameter v is in the order of magnitude 102 (5 to
500), and, i.e., the value of nanoscale friction force Fs is in the order of magnitude 10%, which
requires the whole dataset (inputs and outputs) to be scaled. In fact, unscaled input variables
can result in a slow or unstable learning process, whereas in regression problems unscaled target
variables can result in “exploding” gradients causing the learning process to fail [84], [188].
Especially when features of data have different ranges, which is the case for all three variable
process parameters in the herein performed study, data preparation preceding the training of the
model involves, thus, using techniques to rescale the input and output variables, such as are the
normalization and standardization techniques. Normalization usually means scaling a variable
to have a value between 0 and 1, whereas standardization transforms the data so as to have a
zero mean and a standard deviation of 1 [65].

Depending on the used ML method, the data in this study is therefore standardized or
normalized. Data normalization is hence calculated as [65], [106]:

— z— xmin (51)

T .
max min

where Xnorm is the normalized value of the variable X, while Xmin and Xmax are the respective
minimum and maximum of the values of x.

Data standardization (or z-score) is, in turn, expressed as [65], [106]:

z, =L (5.2)

where x; is the datapoint, = is the mean value of the samples, and o represents the standard
deviation.

Experimental data obtained in the 50 points determined via the DoE-based CVT method for
each of the considered thin-film samples are thus used next in the training process based on the
herein considered ML algorithms, which results in models developed for each sample via each
considered algorithm. To explore then the possibility to obtain a general model apt at describing
(and predicting) the frictional properties of all analysed materials, all the used algorithms are
also trained with the complete set of experimental data, i.e., the data in the 250 measurements
used for the five considered thin-film materials. This approach not only provides the
opportunity to obtain a generalized insight into the observed physical phenomena, but it is also
based on a set of data for the algorithms to learn from, therefore inherently providing better
performing models. In training on data pooled for different materials, it is important to describe

each material type, which is a (nominal) input variable inserted as a numeric class which can
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be input into the machine learning process [65], which is done in the herein considered case, as
shown in Table 5.4, by using binary encoding (also called on-hot or one-of-K scheme) [49],
[104], [188] for each of the resulting material classes. This adds to the used ML models

additional five variables (dimensions).

Table 5.4 Used encoding classes for the used thin-film sample materials in the pooled data

models.
X4 X5 X6 X7 Xs
Al 1 0 0 0 0
Al203 0 1 0 0 0
MoS; 0 0 1 0 0
TiO; 0 0 0 1 0
SS 0 0 0 0 1

5.3. Data Normality

The experimental data used for training the ML models must also be assessed in terms of the
respective normality characteristics defined by skewness and kurtosis parameters [84], [105],
[106], [110]. In fact, normally distributed data are desirable for obtaining good predictive
performances. Symmetric normal distribution has the property of containing the mean, median,
and mode values of the distribution at the peak of the ‘bell curve’. Skewness is a measure of
the asymmetry of the distribution, when compared to the normal distribution, the skew can be
positive or negative indicating to which direction the distribution is skewed, positive — the
distribution is elongated in the positive direction of the values, and negative skew presents the
opposite, the positive and negative ends of the distribution curve are also called tails. Also, the
shape of the distribution can be described by the kurtosis values, this value presents the
curvature of the peak of the ‘bell-curve’ and length of the tails (heaviness), by using positive
kurtosis values for describing a leptokurtic distribution, i.e., higher peak of the curve and closer
tails w.r.t. the normal distribution, zero value for the mesokurtic or completely normal
distribution, and negative or platykurtic for lowered (blunter) peak of the distribution with
heavier (wider) tails w.r.t. the normal distribution. Normality of data is analysed by calculating
their statistical properties in terms of skewness and kurtosis, parameters that are reported for all
measured data in the Appendices B and D. Skewness or, as it is sometimes referred to, Pearson's

moment coefficient of skewness of a random variable x, having an average value of x, is the
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third standardized central moment or, simply, the moment coefficient of skewness y: of a
probability model [5], [106], [110] and [105]:

n 3
nE .’L’i—ZE
— i=1

T S —2))0°

(5.3)

where n denotes number of samples while x; is the value of the sample and = the mean of the
distribution. Skewness of a normal distribution is zero, and any symmetric set of data should

have a skewness near zero.
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Figure 5.4 Histograms and normal distribution fits for all F+ measurements at CVT-based
experimental points on Al (a), Al.Oz (b), MoS: (c), TiO2 (d) and SS (e) samples.
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On the other hand, kurtosis is a measure of the combined sizes of the two tails, i.e., the
amount of probability in the tails [106]. In general, its value is compared to the kurtosis of the
normal distribution, which is equal to 3. If the distribution of the data is such that the kurtosis
value is < 3, then the dataset has heavier tails than a normal distribution while, if kurtosis is > 3,

the opposite is true [105]. The expression used for computing the kurtosis y2 is [105], [106]:

v, == -3 (5.4)
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Figure 5.5 Histograms and normal distribution fits for all Fs test dataset measurements at MC-
based experimental points on Al (a), Al203 (b), MoS: (c), TiO2 (d) and SS (e) samples.
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This definition of kurtosis is hence used so that the standard normal distribution has a
kurtosis of zero. In Figure 5.4 and Figure 5.5 are depicted histograms of all 5 measurements
and the average value, with associated normal distribution fits of measured Ff data for the
training (CVT) and testing (MC) datasets, respectively. The fitted normal distribution curves
visually describe the respective skewness and kurtosis levels for each measurement.

In the CVT data presentation in Figure 5.4, the Al sample shows most close to normal
distribution which, while the TiO2 sample exhibits high amount of positive skewness. MOS>
and SS samples show similar distributions of slight positive skewness, and Al2O3 shows slightly
higher positive skewness with a platykurtic nature. In Figure 5.5 are presented histograms and
distribution fits for the test (MC) dataset, showing again, the best normality characteristics of
the Al sample, while the TiO2 sample again shows relatively high positive skewness. Other
samples’ distribution exhibit low positive skewness when compared to the TiO2 sample.

Complete values of kurtosis and skewness are provided for all measurement points in the
Appendix B for the CVT dataset, and in Appendix D for the MC dataset.

Additional tests of normality are also used in this work on all the datasets collected
experimentally on the used thin-film samples, namely the Anderson-Darling (AD) test [106],
which compares the empirical cumulative distribution function of the sampled data with that
expected for a normal distribution. The resulting p-value, i.e., a parameter which is the result
of the statistical AD hypothesis test, obtained for a dataset after is thus compared to the selected
significance level of 0.05. The p-values obtained for all the herein considered samples confirm
hence the null-hypothesis of the test, i.e., the data can be considered normal. For the purpose of
detecting eventual outliers, i.e., a datapoint which differs significantly from the other
measurements, the Grubbs test [106] is also conducted by calculating the largest absolute
deviation of each point from the sample mean, showing no outliers at the 0.05 significance

level.

5.4. Metrics — Model Selection Criteria

The decision about selecting the best model is not as straight-forward as it could appear,
since the best fitness and predictive performance of a determined model cannot be assessed
based on a single metric alone, but only via a careful analysis of model’s outputs (including the
plotting of the results graphically), residuals, and distribution of predictions [49]. This implies
a considerable effort, especially since in the case considered in this thesis (or other similar

problems) the multidimensionality of the considered phenomena presents a visualization
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problem that requires a large number of low-dimensional plots for all the intricacies of the
model solutions to be fully appreciated.

What is more, all the statistics relative to the errors incurring in the outputs of the considered
models compare true values to their estimates, but, although allowing to evidence "how far
away" the estimated values are from the true value, they all do it in a slightly different way.

One of the most frequent error estimates is the mean absolute error (MAE), which measures
the average magnitude of the errors in a set of forecasts, without considering their direction. It
measures the accuracy for continuous variables. Expressed in words, MAE is the average of the
absolute values of the differences between the forecast and the corresponding observation over
the verification sample. MAE is also a linear score, which means that in the average all the

individual differences are weighted equally [49], [65]:
MAE:%Z|yi—xi| (5.5)
i=1

where ;i is the predicted and x; the true (experimental) value in a dataset constituted by n
members.

The root mean square error (RMSE) is, in turn, a quadratic scoring rule that measures the
average magnitude of the error [49], [65]. RMSE represents the standard deviation of the
residuals (prediction errors) that represent a measure of how far the data points are from the
regression line. In other words, RMSE is a measure of how spread out these residuals are [49],
[65]. Expressing the equation used to calculate the RMSE in words, RMSE is the squared
difference between the forecast and the corresponding observed values, averaged over the
sample. The root of the mean square error indicates the accuracy of the probability estimates
that are generated by the model [49], [65]:

RMSE = /%Zn:(yi ~x) (5.6)

Since the errors are squared before they are averaged, RMSE gives a relatively high weight
to large errors, and it is thus most useful when large errors are particularly undesirable [49],
[65].

MAE and RMSE can be used together to diagnose the variation in the errors in a set of
forecasts. In that, RMSE value will always be larger or equal to MAE. The greater the difference
between them, the greater the variance in the individual errors in the sample. If, in turn, RMSE
equals MAE, then all the errors are of the same magnitude.

R-squared (R?) is a further statistical measure of a regression model that represents the
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proportion of the variance of a dependent variable in relation to an independent variable or
variables [49], [65]. Whereas the previously used correlation expresses the strength of the
relationship between an independent and a dependent variable, R-squared is the measure to
what extent the variance of one variable relates to the variance of the second variable. The
respective coefficient of determination is then used to express how much the variability of one
factor can be caused by its relationship to another factor. It relies heavily to trend analysis and
it is represented as a value between 0 and 1; the closer the value is to 1, the better the fit, or
relationship, between the two factors [49], [65]. The coefficient of determination is calculated
as [49], [65]:

= (5.7)

=1

where X, is the mean of the true values x;, while the yi is the predicted value.

In symbolic regression models based on genetic programming (GP-SR), the performance
metrics in terms of the here described MAE, RMSE, and R? metrics are not enough to assess
the quality of the model [95]. Namely, the GP-SR models are symbolic mathematical
expressions, and as such their form must be assessed also in terms of complexity [95], [139].
There are, hence, multiple combinations of metrics to be satisfied. The dominant numeric metric
for the prediction assessment is chosen to be here the R? value, since this parameter best
describes the form of the solution in the variable space, so higher R? values present the model
solutions which best follow the trend of the values, so that the final decision on selecting the
best GP-SR model is based on finding the model with a best combination of minimal expression
complexity and maximal R?. This is accomplished by employing the Pareto frontier method
[86], [101], by which a set of multiple solutions is chosen to be quasi-optimal since the
optimality is selected on the basis of multiple conditions, optimality of the model is based on
the criterion of finding the models characterised by the minima of the combination of the
considered multiple process parameters (i.e., Pareto frontier), of the smallest 1-R? values and

of the model complexity.

5.5. k-fold Cross-validation

Learning the parameters of a predictive model and testing the resulting function describing

the correlation between the input and output parameters on the same dataset is a methodological
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mistake: a model that would just repeat the labels of the samples that it has just seen would
have a perfect score, but it would fail to predict anything useful on yet-unseen data. This
situation is called overfitting [84], [188]. To avoid it, when performing a machine learning
experiment it is therefore common practice to hold out part of the available (input) data [65],
[84] for validation of best performing hyper-parameters. This is achieved (Figure 5.6) by cross-
validation method, i.e., the usage of a limited sample in order to estimate how the model is
expected to perform when used to make predictions on data not used during the training, is
hence primarily used in applied machine learning to assess the level of confidence (the “skill”)

of a model on unseen data [65], [84].

Model CVT
Parameters Dataset
v k-fold
Cross- divisions
validation \ Training Validation
+ data data
Best
Parameters k-fold
k evaluations
Retrained Evaluation
model

Figure 5.6 Schematic of cross-validation method used to optimize the hyper-parameters of

machine learning models on training dataset.

Cross-validation is therefore a technique used to evaluate predictive models by partitioning
the original sample (CVT dataset) into a training set to train the model, and a validation set to
evaluate the optimal parameters [189]. In a form of this procedure, known as k-fold cross-
validation [65], [84], the original sample is thus randomly partitioned into k equal size
subsamples. Of the k subsamples, a single subsample is retained as the validation dataset for
testing the model, while the remaining k-1 subsamples are used as training data. The cross-
validation process is then repeated k times (k-folds), with each of the k subsamples used exactly
once as the validation data. The hence obtained k results can then be averaged (or otherwise
combined) to produce a single estimate (metric) of the quality of the model. The advantage of
this method is that all observations (all measured data, all input data) are used for both training
and validation, and each observation is used for validation exactly once [65], [84]. The choice
of a value for k is usually 5 or 10, but there is no formal rule. As k gets larger, the difference in

size between the training set and the resampling subsets gets smaller. As this difference
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decreases, the bias of the technique becomes smaller. A value k = 10 is very common in the
field of applied ML and it is often recommended [65], [84].

All the models used in this study are thus subjected to 10 x 10 cross-validation, i.e., 10
repetitions of 10-fold cross-validations on the complete DoE-CVT-based training datasets. This
approach involves randomly dividing the set of observations (measurements in the 50 points as
determined via the DOE-CVT approach) into k groups, or folds, of approximately equal size.
The first fold is then treated as a validation set, and the method is trained on the remaining k —
1 folds. The general procedure is as follows [65]:

% shuffle the dataset randomly;

s  split the dataset into k groups;

s for each unique group:

» take the group as a hold-out or test data set:

» take the remaining groups as training datasets;

» fit the model on the training sets and evaluate it on the test set;
» retain the evaluation score and discard the model,

% summarize the skill of the model using the sample of model evaluation scores.

After defining in Section 5.2 the preparation procedures needed to use the experimentally
acquired data on the considered thin-film samples in the considered numerical evaluation tools,
in Section 5.3 have thus been defined the evaluation metrics parameters that will be used to
comparatively assess and validate the quality of the used predictive models. This provides the
basis to implement next the considered ML and GP numerical methods to determine functional
correlations between the value of nanoscale friction and the corresponding influencing

parameters.

5.6. Machine Learning Regression Methods

Based on the considerations of Sections 5.2 and 5.3, and using experimental data measured
in the points determined via the DoE-CVT approach, ML is applied here to obtain the
dependency of the friction force F: in the nanodomain in dependence on the process parameters
Fn, v, and 4. Presented models are developed using the TensorFlow [108], Scikit-learn [127]
and GoSumbD [2] implementations.

There is a common principle that underlies all supervised ML algorithms for predictive
modelling, supervised ML algorithms are, in contrast to un-supervised methods, trained on a

dataset which comprises of both inputs and corresponding outputs for each datapoint, while the
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un-supervised ML methods rely only on the input data and are mainly used for clustering and
association (i.e., image recognition) [84]. Supervised ML algorithms are described as learning
a target function (f) that best maps the input variables (x) to an output variable (y). This is called
predictive modelling or predictive analytics and the goal is to make the most accurate
predictions possible [49], [84]. In this process the correlation function’s form is unknown, i.e.,
there is no predefined form to fit the parameters. It is thus imperative to “mine” through the
data by employing multiple methods of predictive modelling [65] and deduce conclusion that
will lead to further understanding of the herein considered complex physical phenomenon. As
multiple ML algorithms were used in the used data mining process, only the ones which show
satisfying predictive performance are shortly described below, as are their performance metrics
achieved on the unseen test datasets. The considered group of ML models, described in the
following sub-sections, is generally consisting of conventional ML algorithms that result in a
black-box model, i.e., the obtained solutions are not usable in practical applications in a
mathematical form, but, nonetheless, these tools are powerful predictive algorithms presenting
the state-of-the-art of applied ML.

5.6.1. Multilayer Perceptron

A multilayer perceptron (MLP) is a deep artificial neural network, meaning it is consisted of
more than two layers of perceptrons, which are algorithms used for supervised learning of
functions, i.e., binary classifiers, which provide outputs in the form of decision whether or not
an input belongs to a certain class. They are, in turn, composed of an input layer receiving the
signal, an output layer that evaluates or predicts the input and, in between those two, an arbitrary
number of hidden layers that are the true computational engine of the MLP algorithm. MLPs
with one hidden layer can approximate any continuous function [175].

In the forward pass, the signal flow moves then from the input layer through the hidden
layers to the output layer, and the decision of the output layer, i.e., the prediction, is measured
against the ground truth labels [175] which present the actual data the model needs to predict.
In the backward pass, using backpropagation and the chain rule of calculus for calculation of
the derivative of the two or more-function compositions, partial derivatives of the error function
are back-propagated through the MLP taking into account the various weights and biases
defined as internal parameters which provide feedback for the training process. That
differentiation results in gradients, or a landscape of errors, along which the parameters may be

adjusted as they move the MLP one step closer to the error minima [175]. This can be done
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with any gradient-based optimisation algorithm, such as the stochastic gradient descent [175],
which is used in this work. The used activation function [175] defining the output of the neuron
is, in turn, a sigmoid function, i.e., a logistic function (an ‘S’-shaped curve) [175] with five

hidden layers used.

5.6.2.Random Decision Trees and Forests

Random Forest (RF) is one of the most popular and most powerful ML algorithms®. It is a
type of ensemble ML algorithm called bootstrap aggregation or bagging. The bootstrap is a
powerful statistical method for estimating a quantity from a data sample, such as mean values
[151], [184]. In bagging, the same approach is used, but instead of estimating entire statistical
models, the most commonly generated decision trees is estimated for the given data [151],
[184]. RF are based on combining multiple decision trees into a single stronger predictor. Each
tree is trained independently with a randomly selected subset of the considered instances (i.e.,
experimental data). The resulting prediction is an average of multiple predictions. RFs try to
reduce the respective variance by not allowing decision trees to grow large, making them harder
to overfit [151], [184].

Trees are an important type of algorithm for predictive modelling ML, the most common
representation of the decision tree model being the binary tree. Each node represents therein a
single input variable (x) and a split point, i.e., a split in the tree structure with the goal of
achieving more optimal (closer to the real result) value of the resulting value of that variable
(assuming the variable is numeric). The leaf nodes of the tree contain the output variable (y)
which is used to make the prediction. Predictions are hence made by “walking” the splits of the
tree until getting to a leaf node and obtaining as output the class value at that leaf node [151],
[184].

Trees are fast to learn and very fast in making predictions. They are also often accurate for
a broad range of problems and do not require any special preparation of data [151], [184].
Decision trees have a high variance and can yield more accurate predictions when used in an
ensemble that is used in the form of an RF algorithm [151], [184].

As already pointed out above, multiple samples of the herein obtained experimental training

3 According to the latest Machine Learning Methods Poll “Top Data Science and Machine Learning Methods Used
in 2018, 2019” available at:
https://www.kdnuggets.com/2019/04/top-data-science-machine-learning-methods-2018-2019.html
(accessed on November 2019)
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data are used in the ML models that are, hence, constructed for each data sample. In order to
make predictions for new data, each model makes thus a prediction, and the predictions are
averaged to give a better estimate of the true output value. RF is a tweak on this approach where
decision trees are created so that, rather than selecting optimal split points after validation,
suboptimal splits are made by introducing randomness [151], [184], thus providing more
diversity in solutions. The difference of the models created for each sample of the data is,
therefore, more pronounced than it would otherwise be, but they are still accurate in their unique
and different ways. Combining their predictions, results, however, in a better estimate of the
true value [151], [184].

5.6.3. Support Vector Regression

Support vector machines (SVM) are perhaps one of the most popular class of ML algorithms.
Generally, in SVM a hyperplane is selected to best separate the points in the input variable
space, by their class, either class 0 or class 1, which enables the creation of a hyperplane [64],
[103]. In 2D this separation is easily visualized, but the same approach works also for
multidimensional data. The SVM (or SVR, for support vector regression) learning algorithm
seeks for the coefficients that result in the best separation of the classes by the hyperplane. The
distance between the hyperplane and the closest data points is then referred to as the margin.
The best or optimal hyperplane that can separate the two classes, is the one that has the largest
margin. Only these cases are relevant in defining the hyperplane and in the construction of the
classifier, i.e., a function which describes a set of instances that have common features [84].
These class of points are thus called the support vectors, since they “support” or define the
hyperplane [64], [103].

The v-SVR method is used in the thesis as implemented in the commercially available
GoSumD software [2]. This type of SVR involves the v parameter which is used to limit the
number of support vectors in the solution with respect to the total number of samples in the
dataset [103]. The input variables are scaled in it by normalization, whereas the radial basis
function (RBF) kernel is used, where the RBF’s value depends only on the distance between
the input and a fixed point, i.e., a support vector, and its parameters are optimally chosen by
employing the BOBYQA optimization algorithm (Bound Optimization BY Quadratic
Approximation) [136]. SVM/SVR algorithms of the on-line LIBSVM library [37], containing
the often-used SVR/SVM algorithms, are finally applied.

By using the analytical representation of the model obtained via the SVM-regression method
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(SVR), the output value can then be predicted from the expression [103], [148]:

flx)= ioﬁ-K Tz, +0b (5.8)

where X is the input vector, x; is the i-th support vector, a: are the coefficients of the used kernel
function, | is the number of support vectors and coefficients, K is the kernel function (RBF),

and b is a free parameter used for scaling the results.

5.7. Comparison of Machine Learning Models

After successful numerical trials involving many combinations of ML algorithms, including
SVR, decision trees and forest ensembles, additive regression, stacking and bagging classifiers,
lazy algorithms, and MLPs, their performances can be assessed based on the metrics defined in
the above Section 5.3. All models are thus subjected to a 10-fold cross-validation, and only the
models that achieved an R? value above 0.5 are presented.

5.7.1.1D Considerations

All the reported predictive performance results are related to the best individual in the
ensemble of cross-validated individuals. The values of the hence attained results on testing
datasets are presented in Table 5.5 for the best-performing algorithms, where R? is selected to
be the most dominant (but not exclusive) metric, with values of R? above 0.7 considered as
good predictive performances (bolded).

All used ML algorithms are compared to the response surface model (RSM) employed as a
base model for validating the obtained improvements in predictive performances. In fact, the
achieved metrics values for the RSM model in Table 5.5 show poor predictive performances
for all combinations of input data, i.e., for the data of each considered thin-film sample material
separately, as well as for the pooled data including all analysed materials. The resulting R? vales
are thus in the range from 0.032 for the TiO2 sample, to a maximal achieved R? value of 0.343
for the pooled data.

The RF algorithm shows better results, with the best achieved R? value of 0.73 for the Al
sample, and the worst predictive result of 0.53 for the Al,O3 sample. All metrics of this
algorithm show low error variance, i.e., a small difference between RMSE and MAE. The RF
method yields also excellent predictive performances on the pooled dataset with an R? value of
0.81, which makes this method a candidate for further analyses. What is more, due to the nature

of the ensemble of random decision trees, this method is inherently good at predicting the highly
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nonlinear variability of the expected outputs.

The MLP algorithm shows even better predictive performances, with achieved R? > 0.7 for

three out of the five considered thin-film sample materials, namely 0.77 for Al, 0.71 for MoSy,

and 0.78 for SS, with a low variance of RMSE and MAE. The performance on the pooled

dataset is, interestingly, again the best one, with the resulting R? value of 0.88.

Table 5.5 Comparative presentation of predictive performances on the test datasets for the used

ML models vs. the response surface methodology.

Algorithm  Sample RMSE MAE R?

Al 6.21 6.02 0.062
Al,O3 5.95 5.32 0.13
MoS; 9.68 9.11 0.13

RSM
TiO> 7.98 7.32 0.032
SS 6.96 6.21 0.092
Pooled 3.82 3.56 0.34
Al 0.75 0.63 0.73
Al,O3 1.50 1.20 0.53
MoS: 2.12 1.71 0.68

RF

TiO> 2.16 1.74 0.63
SS 1.59 1.28 0.55
Pooled 1.06 0.99 0.81
Al 0.85 0.72 0.77
Al;O3 1.64 1.36 0.63
MoS: 2.02 1.60 0.71

MLP
TiO» 2.17 1.75 0.68
SS 1.87 1.54 0.78
Pooled 0.99 0.77 0.88
Al 1.46 1.23 0.67
Al>O3 1.32 1.11 0.51
MoS: 1.34 1.15 0.75

SVR _

TiO> 3.26 2.76 0.66
SS 3.05 2.48 0.72
Pooled 1.46 1.27 0.87
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The SVR algorithm shows somewhat generally weaker performances in terms of the highest
achieved overall R? values for all samples, with achieved R? value of 0.72 on the SS sample,
also the MoS; sample shows better prediction R metric of 0.75 w.r.t. the MLP method, while
the pooled data case again results in the highest achieved performance of R? = 0.87. In SVR the
variance of the RMSE-MAE metrics is the lowest.

As it can thus be seen in Table 5.5, all algorithms, including the RSM model, show the best
predictive performances when trained by using the pooled dataset; this is due to the largest
available set of training data, which provides to the model more information in terms of
response variance and, thus, enhances predictivity. Models trained on pooled data show,
therefore, excellent results of the fit to the training data, which is always better than the
prediction on unseen test data, which, in turn, provides an insight into the performances over
each individual material’s data in the pool.

In Figure 5.7 is provided the graphical presentation of the training performances of the used
ML methods on the pooled datasets. The complete dataset is segregated here in classes for each
of the considered thin-film materials. The obtained R? values (given in Figure 5.7 in
parentheses) are obtained for the complete pooled dataset, whereas the training fit quality for
each material can be well observed. Namely, the training performance on the Al>O3 dataset is
the poorest, which can be explained by this dataset’s low kurtosis values (< 3) as well as the

platykurtic nature of this dataset, which influences the training process.

20 : : : :
| Al - ALO; ' MoS; . TiO, . SS

154 3*'*EXp. :
= 'N I | MLP (0.87)3
10l | SVR @S ;
=~ \'j | /\A RF (0.89) | :
SR 1A - i 1
. il | VA TP W i |
’ M\/V\/j\/w o, f ; 1
A
0 1 1 1 1

0 25 50 75 100 125 150 175 200 225 250

Datapoint

Figure 5.7 Performance of best developed ML — based models (MLP — Multi Layer Perceptron,
SVR — Support Vector Regression and RF — Random Forest) on training (pooled) dataset for
all samples. Values in parenthesis present achieved R? values for each model.
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In fact, in order to fully appreciate the predictive performances of pooled data-trained
models, their predictive performances must be considered over separate testing datasets for each
of the used sample materials. These metrics are hence shown in Table 5.6 for the three best-
performing ML algorithms — RF, MLP, and SVR. The shown individual performances of
pooled data-trained models show good predictive results, where almost all algorithms result in
an R? value > 0.7. The RF algorithm shows a relatively poor performance for the Al,O3 and
TiO2 samples, while it exhibits high R? values of up to 0.81 for the other considered thin-film
samples. The MLP algorithm shows overall the best performances of all used ML methods, and
all the samples are predicted here with R? in the vicinity of 0.8, i.e., ranging from 0.74 for the
TiO2 sample, to 0.85 for the Al>O3 and SS samples. The SVR algorithm predictions result in
the highest scoring, with an R? value of 0.9 achieved for the Al, MoS; and SS samples, while
the Al,Os prediction results in a disappointing R?value of 0.54.

Overall, when compared to the RSM base model, the performances of the ML methods show

significant improvements in prediction capacity.

Table 5.6 Predictive performances of the considered ML models trained on pooled data for each

thin-film sample material.

Algorithm Sample RMSE MAE R?
Al 1.30 0.604 0.80

Al2O3 0.845 0.652 0.63

RF MoS; 1.59 0.597 0.81
TiO; 231 1.03 0.56

SS 1.21 0.554 0.81

Al 1.87 151 0.81

Al2O3 2.24 1.98 0.85

MLP MoS; 1.50 0.737 0.79
TiO; 2.57 1.90 0.74

SS 1.78 1.53 0.85

Al 1.51 0.983 0.90

Al2O3 1.28 0.697 0.54

SVR MoS; 1.16 0.613 0.90
TiO; 2.40 1.38 0.73

SS 1.39 0.927 0.90
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In order to deduce their trustworthiness in predicting the nanoscale friction force Fs in
dependence on the considered process parameters Fy, v, and 9, all the analysed ML models are
also further scrutinized graphically, in the form of prediction fits vs. experimental test data, for
each used thin-film material. In Figure 5.8. are thus depicted the resulting plots in the MC test
data points ordered according to ascending temperatures, with the respective fits for the
predictions of the RF, MLP and SVR algorithms, for the thin-film samples synthesized by using
the ALD technique.

9
il -°- Exp. 164-° - Exp.

87 —— MLP (0.85) 141 MLP (0.74)

7 —— SVR (0.54) 1-*= SVR (0.73)

—— RF (0.63)

| RF (0.56)

Ff [HN]

1 5 10 15
Datapoint Datapoint

(a) (b)
Figure 5.8 Predictive performances of the considered ML models on the MC test dataset for the
ALD synthesized samples: Al,O3 (a) and TiO2 (b).

The measured points are shown in Figure 5.8 with shaded uncertainty levels in three shades
of grey which present the + ¢ variance of data (+ 1c as the darkest, + 26 medium and + 36 as
the lightest shade of grey). The represented values correspond, in fact, to the three-sigma
statistical conventional heuristic, which states that, from the cumulative distribution function
of the normal distribution, these three shown confidence levels represent 68.27 %, 95.45 % and
99.73 % of data, thus containing, with empirical near-certainty, all data [106]. What is more,
for each considered ML algorithm and the observed material data, in Figure 5.8 is noted in
parentheses the respective R? value.

The values for Al,O3, as shown in Figure 5.8a, and the immediately obvious respective poor
MLP fit, even though the achieved R? is large, allows evidencing one of the pitfalls of data
mining in general. In fact, MLP shows here a good form of the fit function, but it is significantly

away from the six-sigma extent of the measurements. The SVR results also in a poor fit, but the
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respective trend is much closer to the six-sigma area of the experimental data, even though in
this case the R? value is low, which actually means that the trends of the response are not
followed closely. This is also the case for the RF model, with slightly better correlation, but
also with the obvious lack of fit, especially in the mid-range of the data.

In Figure 5.8b, depicting equivalent data for the TiO> thin-film sample, the fits are again
generally out of the six-sigma extent (even though the correlations are high for the SVR and
MLP methods), but the trends are more closely followed by the models. This is true especially

for the MLP model, but also for the RF model in the higher-ordered datapoints.
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Figure 5.9 Predictive performances of the considered ML models on the MC test dataset for the
PLD synthesized samples: Al (a), MoS; (b) and SS (c).
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In Figure 5.9a, reporting the equivalent results for the thin-film samples obtained by using
the PLD synthesis method, the uncertainty bounds of the Al sample are, in turn, much wider
than those of the other analysed materials and, in conjunction with the good normality
characteristics of this dataset, the fit is good for all algorithms. In the case of the MoS> and SS
samples shown in Figure 5.9b and Figure 5.9c, respectively, narrow six-sigma areas and
generally good fits can be observed for all the used ML models. This is especially true for the
MoS; sample, while for the SS sample some difficulties can be observed in the low and higher

order datapoints when the MLP and SVR models are used.

5.7.2.2D Considerations

As pointed out previously, one or two single-parameter metrics cannot provide the needed
confidence for the assessment of the used numerical models. Thus, the relation between the
multiple correlated influential parameters must be represented and considered through the
visualization of model functions with at least two variable parameters, i.e., by using surfaces.
All the combinations of the used algorithms, even the ones with poor performance metrics, are
therefore thoroughly analysed. The main influential characteristics of these are hence presented
in the following for each model and each used thin-film material. Due to a large number of
possible combinations of variable parameters’ representations vs. Fy, the graphs depicted below
are showing representative results for a single constant value of each variable parameter chosen
arbitrarily for brevity of representation, since many other combinations were visualized during
the data analysis which showed no major deviations from the ones depicted. The variable of
normal force is shown in context of total normal load defined as Fi = Fn + Fa, i.e., as a sum of
exerted normal force Fn (experimental parameter) and the adhesion force Fa which is a property
of the respective analysed material, which as such acts concurrently with the applied normal
force yielding the total exerted normal load F. as described in the experimental section of this
thesis.

In Figure 5.10 and afterwards are thus presented surface plots of the nanoscale friction force
Fr values obtained by using the RF model when two of the process parameters are varied while
the third one is kept constant, i.e., the normal load is F. = 100 nN, sliding velocity is v = 250
nm/s, and temperature is 3= 40 °C. The hence obtained results for the Al,Oz and TiO2 samples,
obtained via the ALD process, are shown in in Figure 5.10. It can be seen here that the RF ML
algorithm predicts a highly nonlinear influence of temperature with a marked peak around

~ 40 °C, which was also noticed in the above Section 3.5.2 and Chapter 4. In relation to the two
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considered materials, opposite temperature effects can, in turn, be observed, namely a strong
positive trend for Al,O3z and a quasi-parabolic negative effect for TiO2 sample. The influence
of velocity shows a quasi-linear trend vs. temperature, but a highly negative effect when related
to a variable total load FL. The total normal load effect shows, finally, a weakening quasi-linear
relationship for both materials with respect to variable temperature, but an almost completely

flat trend when related to the variable sliding velocity.
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Figure 5.10 Surface plots of the RF ML solutions of the Fr values for constant variables in
columns (left to right): total load (FL = Fn+Fa), sliding velocity (v) and temperature (.9), for the
ALD samples: Al,Oz (top row) and TiO2 (bottom row).

In Figure 5.11, equivalently as in the previous case, are shown the RF model solutions for
the PLD-synthesized samples. The depicted trends of the effects of velocity and temperature on
the nanoscale friction force Fr are similar for the Al and SS samples, showing, for a constant
FvL value, a strong positive nonlinear correlation for temperature, and a weak quasi-linear effect
for velocity. The similarity of the FL vs. & trends for v = const. is clear for all the three
considered samples, showing again a highly nonlinear effect of temperature at ~ 40 °C, while

the v vs. Fr influences at .9 = const. show similarities in terms of the strong weakening effect
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of velocity and a weak quasi-linear effect of F.. The RF model results in any case in non-

smooth predictions, which is inherent in the decision tree models themselves.
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Figure 5.11 Surface plots of the RF ML solutions of the Fr values for constant variables in

columns (left to right): total load (FL = Fn+Fa), sliding velocity (v) and temperature (.9), for the

PLD samples in rows (top to bottom): Al, MoS; and SS.

It is important to note here especially that the trends of the Fr values, depicted in the Figures
5.8 and 5.9, show that there is indeed a similarity between the tribological behaviour of the
analysed samples, which will probably be made even more evident considering the results given
below.

In Figure 5.12 are then depicted, in an analogous fashion as before, the values of the
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nanoscale friction force Fr obtained for the ALD — synthesized samples by using the MLP
model, maintaining again one of the process parameters constant, while the other two are varied.
Smoother predictive solutions are attained in this case. The effects of sliding velocity vs.
temperature for FL = const. shows, thus, a smooth nonlinear effect of temperature, but also a
smooth quasi-linear effect of sliding velocity. This weak linear influence of v is also evident in
the v vs. F graphs for ¢ = const. (right column). The influence of F_ in this right column is, in
turn, almost-linear with a positive correlation. For Al,O3 sample, the effect of normal load and
temperature shows slightly tilted smooth quasi-linear effect of Fr, and a diminishing effect of
temperature at around 60°C, while the TiO> sample, for equal conditions shows highly non-

linear effect of temperature, again with an interesting peak at around 50°C.
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Figure 5.12 Surface plots of the MLP solutions of the Fr values for constant variables in
columns (left to right): total load (FL = Fnt+Fa), sliding velocity (v) and temperature (.9), for the
ALD samples Al>O3 (top row) and TiO> (bottom row).

In Figure 5.13 are depicted the Fr values obtained via the MLP method for the PLD —
synthesized samples. Beautiful overall similarities of the influential effects on Ff can be
observed for all the samples. It can be deduced that the effect of temperature, observed in

conjunction with a variable velocity (left column) and the total normal load (mid-column) alike,
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is again nonlinear with a parabolic-like curvature. The right-most column, depicting the

[
t

nfluences of F and v, shows a truly remarkable similarity of the continuous positive effect of

he load FL on Fy, and a weak quasi-linear strengthening effect of sliding velocity.
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Figure 5.13 Surface plots of the MLP solutions of the Fr values for constant variables in
columns (left to right): total load (FL = Fn+Fa), sliding velocity (v) and temperature (.9), for the
PLD samples in rows (top to bottom): Al, MoS; and SS.

SVR ML solutions for the ALD-obtained samples are finally shown in Figure 5.14, again
allowing to evidence clearly the influences of the considered process parameters on the
frictional behaviour of all the sample materials in the nanodomain. When compared to the

results attained via the RF, and, especially, the MLP algorithms, the results obtained by
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employing the SVR method show very curved surfaces, which is an inherent property of the
used radial basis kernel function. Once more the most striking resemblance among the two thin-
film sample materials is visible in the right-most column showing the effects of F and v, a

nanofriction feature that is clearly becoming very common and prominent for the all the
considered thin-film materials. As in the previous cases, the highly non-linear influence of
temperature is obvious. On the other hand, when compared to the current knowledge in the
field, the non-linear effect of F. for the Al>Os at constant v seems to be overemphasized, which
could be a consequence of the evidenced low R? value achieved for Al,O3 by using the SVR
model (cf. Figure 5.8). In the case of TiO», the influence of F is, in turn, much smoother but

still giving rise to an augmenting effect on Ff, which is in accordance with the observed

experimental correlations. The effect of sliding velocity is, finally, weak, negative, and quasi-

linear in all cases, which is consistent with the low correlation factors found in the above

experimental observations.
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Figure 5.14 Surface plots of the SVR ML solutions of the Fr values for constant variables in

columns (left to right): total load (FL = Fn+Fa), sliding velocity (v) and temperature (9), for the

ALD samples: Al>O3 (top row) and TiO- (bottom row).

In Figure 5.15 are depicted the SVR ML solutions for the remaining (PLD) samples. The
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striking similarities, not only between the sample materials themselves, but also in comparison
to the MLP solutions, can be appreciated already by a quick visual inspection. The data-mining
process seems, ergo, to be converging towards a potential unified solution. The right-most
column shows again a quasi-linear relationship of velocity and total load vs. the resulting
friction force, albeit one negative, and the other one positive.
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Figure 5.15 Surface plots of the SVR ML solutions of the Fr values for constant variables in
columns (left to right): total load (FL = Fn+Fa), sliding velocity (v) and temperature (9), for the
PLD samples in rows (top to bottom): Al, MoS; and SS.

When the SVR “curvy” predictions are taken into account, the friction force seems, in turn,

slightly over-estimated at the extremes of the observed variables’ domains. The effect of F vs.
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temperature shows again a nonlinear trend, with similar curvatures to those predicted by the
MLP algorithm. In the case with variable temperature and constant total load, the effect of
velocity is, finally, once more predicted to be quasi-linear, which is also a common feature of
the SVR model for all the considered thin-film samples.

The analysis of the frictional behaviour in the nanometric domain performed by using the
black-box ML models shows, thus, that it is possible to provide effective predictions of the
influence of the multiple process parameter on the value of the friction force with satisfactory
levels of accuracy, i.e. with R? values ranging from of minimum 0.54 for the SVR algorithm on
an Al203 sample, to 0.9 for the SVR prediction on an Al sample. What is more, the other best-
performing algorithms, namely the RF and the MLP ML models also show high predictive
performances, especially when MLP is used. It can also be concluded from the respective
predictive performance of each model that the smoother solutions are preferable, i.e., the

models exhibiting smoother solutions result with a better predictive performance.

5.8. Genetic Programming — Symbolic Regression

From the above analysis of black-box ML models it can be concluded that there is, indeed,
an indication that a general and common mathematical form apt at predicting the value of
nanoscale friction force depending on variable multiple influencing parameters could exist. The
ML models used so far, despite their high capabilities as predictive tools, cannot be used in
practice for in-depth analyses, numerical modelling, etc., since in the considered class of
problems they entail a large number of coefficients, i.e., 250 support vectors for the SVR, or a
large number of sigmoid function’s parameters for the MLP. Thus, in this part of the thesis,
with the goal of attaining at least the similar level of predictive performances, a symbolic
mathematical expression, based on evolutionary algorithms, will be developed and described.
A symbolic mathematical expression provides an analytic form of correlation of observed
multidimensional experimental data with respect to variable parameters, which is the main goal
of this research, and presents a big step towards identification of physical laws that underlie the
observed physical phenomena of nanoscale friction. The developed mathematical expression is
with respect to previously developed black-box models directly understandable and usable by
humans because of its simple mathematical formulation and low number of involved
parameters which also provides means for streamlined integration into, modification, and
comparison with existing friction models and numerical schemes, as well as direct calculation

usage for nanoscale friction prediction, adaptive control purposes and further analytical
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analyses.

Evolutionary algorithms are typically used to provide good approximate solutions to
problems that cannot be easily solved using other techniques. Many optimisation problems fall
into this category. In fact, in this case it may be too computationally-intensive to find an exact
solution to the considered problem, but sometimes a near-optimal solution is sufficient. Due to
their random nature, evolutionary algorithms never guarantee to find an optimal solution for
any problem, but they will often find a very good solution, if one exists. This is exactly suited
for the herein considered purpose of determining a functional dependence of multiple variable
parameters on the nanoscale friction force, since any kind of the expressional form of the
respective dependence is not known a priory [65], [139], [147].

Evolutionary algorithms (EA), such as, i.e., genetic programming (GP) algorithms, are
therefore often used to tackle problems that humans do not really know how to solve. It has
been shown that EA, free of any human preconceptions or biases, can, in fact, generate
surprising solutions that are comparable to, or better than, the best human-generated efforts. It
is merely necessary that an obtained good solution is recognised even if it is hot known how to
create it [139], [147]. In contrast to conventional evolutionary algorithms, genetic programming
symbolic regression evolves a genome whose outputs are symbolic expressions, such as
mathematical functions and variables, rather than predicted numerical values.

Genetic programming is much more powerful than genetic algorithms, since the output of
the genetic algorithms is a quantity, while the output of GP is another computer program or a
symbolic expression [88], [89]. Several GPs suitable to be used for the problem at hand in this
thesis will hence be described and used in the following sections, and all of the models are
developed in HeuristicLab [173].

Standard GP method (i.e., Koza style — by the author) [88], the evolution of the expressions
occurs over a number of generations (iterations) and each new generation of individuals is
created from the existing population by direct copying as well as performing operations on
individuals analogous to the alterations to the DNA sequences. This is accomplished by
evaluating each individual in the current population to determine its fit vs. the actual variable’s
value, and performing selection and recombination of individuals, with a bias towards those
that are more fit [88]. At the beginning of each run of this process, a population of symbolic
expressions is randomly generated. This is accomplished by using a simple tree building
algorithm that randomly selects nodes from a set of primitive functions, i.e., additions,

subtractions, divisions, exponentiation, etc. of the input variables, as well as randomly
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generated constants. The nodes are then randomly assembled into tree-structured symbolic
expressions, with subject-defined trees sizes, i.e., model depth and length, [88], [89].

After evolving the population for 50 generations, a number that is selected after preliminary
runs as the best compromise between the computational intensity and results, via a process of
copying, mutation and recombination, the tree expression with the best fitness is usually
selected as the best solution to the problem. For each expression, a sub-tree is randomly selected
next. The sub-trees are then exchanged to create new expressions to go into the next generation.
On the other hand, a mutation operation is used relatively infrequently compared to this
crossover operation, and its purpose is to maintain genetic diversity over the course of the run

and to prevent premature convergence to unsatisfactory solutions [95], [139].

5.8.1.Grammatical Evolution GP

Grammatical Evolution (GE) is a type of GP that applies genetic operators to an integer
string, subsequently mapped to a program (or similar) using a grammar formalism, which
presents a set of syntaxes of most currently used programming languages, which allows a
genetic evolution of solutions not only consisting of standard mathematical terminals
(operations and variables), but also loops, logical operators, etc. [143]. One of the benefits of
GE is that this mapping simplifies the application of the search process to different
programming languages and other structures. In fact, in type-free, conventional Koza-style GP,
the function set must meet the requirement of closure: all functions must be capable of accepting
as their arguments the output of all other functions in the function set. Usually this is
implemented by dealing with a single data-type such as double-precision floating point. While
modern GP frameworks support typing, such type-systems have limitations that GE does not
suffer from. In fact, GE offers a resolution to this issue by evolving solutions according to a
user-specified grammar that can consist of complex operations or even blocks of functional
dependencies, rather than simple mathematical operations [121], [143]. In the thesis a wide
array of mathematical operators is hence used as grammar, including trigonometric functions,
log, In, exp, etc. The search space can therefore be restricted, and domain knowledge of the
problem can be incorporated. The phenotype, however, is the same as in Koza-style GP, i.e., a
tree-like structure that is evaluated recursively [121], [143].

5.8.2. Offspring Selection GP

As stated in the original paper defining this type of GP [1]: “In terms of a goal-oriented

paradigm, selection is the driving force of GAs. In contrast to crossover and mutation, selection
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is completely generic, i.e., independent of the actually employed problem and its representation.
Offspring selection (OS) is usually implemented as a selection for reproduction (parent
selection). This self-adaptive selection mechanism is closely related to the general selection
model of population genetics [1], [91]. As the problem- and representation-specific
implementation of reproduction in GAs (crossover) is often critical in terms of the preservation
of essential genetic information, for improving the global solution quality and robustness in
terms of parameter settings and the operators of GAs. Offspring selection has proven to be very
suited in various fields of applications and produces results competitive to human-produced
results [87]” Success of this method is confirmed in fields such as quantum computing [154],
antennas [100], mechanical systems [70], cancer research [177], etc. This model uses then the

same parameters as the standard Koza-style method [1].

5.8.3.Age-Layered Population Structure GP

A common problem in running an EA is that, after a determined number of evaluations, the
population converges to a local optimum and no improvements are made, no matter how much
longer the EA is run. The existing genetic material in the population has converged so that the
variation operators cannot produce new individuals which will move the population into a better
part of the fitness landscape. Many attempts at creating a more robust EA have been tried, and
this is still an ongoing area of research [139]. To reduce the problem of premature convergence,
the Age-Layered Population Structure (ALPS) was designed. This metric of age measures how
long the genetic material has been evolving in the population. ALPS modifies a typical EA by
segregating individuals by their age into different age-layers, and by regularly introducing new,
randomly generated individuals in the youngest layer, thus refreshing the population, resulting
in an algorithm that is never completely converged. By using age to restrict competition and
breeding, younger individuals are able to develop without being dominated by older ones [69],
[95].

5.8.4. Multi-gene GP

A promising variant of GP, namely multi-gene genetic programming (MGGP), which is
consisted of multiple genes, where each of them is actually a standard GP symbolic expression
as described earlier [95], [139]. The complete MGGP model is derived as a linear combination
of each used gene, thus generating a pseudo-linear model which can describe non-linear effects.
MGGP model are developed using the GPTIPS2 framework [149] involving 50 genes, which

was determined to be optimal in terms of processing time, resulting models complexity and
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predictive performance. The capabilities of MGGP have been shown by applying it to the
formulation of various complex problems such as mechanical properties of nanomaterials
[166], characterisation of 3D printed components [165], and others [94], [117], [123], [167].
The validity of MGGP is confirmed by applying the derived models to the parts of the
experimental results that are not included in the training process, i.e., the unseen test datasets,

which is thoroughly presented below.

5.9. Comparison of Symbolic Regression Models

The mathematical expressions developed by employing the previously described symbolic
regression methods are comparatively analysed next. For a thorough predictive performance
assessment, the developed models’ performance metrics are, once more, obtained by testing the
models on unseen testing data. All shown models performance parameters are obtained here
after training them with a 10-fold cross-validation on the DoE-CVT obtained experimental data,
where 30 % of the data is used as a validation set for parameter optimization.

In Table 5.7 are hence provided the performance metrics results for all the models developed
by training the considered GP models on a single material dataset and on pooled data. With
respect to the ML models analysed in Section 5.6, in this case the performance metrics also
contains information about the resulting model’s length and depth, both of which provide
information about the symbolic expression’s complexity, and are preferred to be the smallest
possible.

By inspecting the data reported in Table 5.7 it can thus be seen that the performance of the
ALPS GP models is relatively poor for all the analysed thin-film samples. Only in the case of
the MoS; sample and the pooled dataset the model shows higher R? values of 0.74 and 0.68
respectively, but also a high variance of MAE and RMSE.

Standard Koza-style GP (KS GP) predictions are quite poor, with maximal predictive
correlations (R? values) of 0.6 (for, again, the MoS, sample — which is probably due to the
distribution of the data for training). High-complexity models are generated, while the error
variance is low. The grammatical evolution approach (GE GP) generates the simplest models,
but unfortunately with poor predictive performance, i.e., maximal R? values of 0.62. Offspring
selection algorithms (OS GP), even though fast in execution, provide again low predictive
performance models in all datasets. On the other hand, the multi-gene approach (MG GP)
provides by far the most impressive predictive correlations of 0.82 for the Al sample, 0.9 for
MoS2, 0.83 for SS, and an R? value of 0.82 for the pooled data trained model.
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Table 5.7 Comparative presentation of predictive performances on the test datasets for the

considered GP-based models.

Algorithm  Sample RMSE MAE R? Length  Depth
Al 5.36 4.13 0.162 101 18
Al203 2.66 151 0.401 153 27
ALPS GP M-oSz 1.48 1.08 0.746 39 13
TiO: 3.59 291 0.590 48 11
SS 5.08 2.50 0.084 68 12
Pooled 2.00 1.48 0.678 197 34
Al 5.43 5.26 0.567 153 19
Al;,O3 0.648 0.544 0.501 124 15
KS GP M-oSz 3.68 2.75 0.601 134 21
TiO; 9.32 8.28 0.349 151 18
SS 4.66 3.83 0.322 149 22
Pooled 5.30 4.64 0.372 78 15
Al 5.16 4.93 0.405 21 12
Al203 1.28 1.20 0.466 38 11
GE GP M.oSZ 7.77 6.89 0.619 33 11
TiO: 8.17 6.64 0.349 37 14
SS 3.37 2.78 0.408 40 12
Pooled 4.62 3.33 0.053 38 13
Al 7.82 4.04 0.167 203 23
Al,O3 1.60 1.19 0.014 54 15
0S GP M-052 5.60 4.68 0.005 154 22
TiO; 18.4 14.9 0.020 151 23
SS 2.56 2.06 0.195 154 19
Pooled 4.32 3.70 0.366 53 14
Al 1.08 0.948 0.818 81 4
Al203 0.693 0.636 0.511 40 3
MoS; 0.933 0.805 0.900 97 3
MG GP TiO: 2.10 1.67 0.535 39 4
SS 0.976 0.815 0.826 89 3
Pooled 1.48 1.06 0.824 84 4
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The minimal achieved predictive performance are, in turn, obtained for the Al203 and TiO>
samples due, as noted earlier, to their distribution properties (cf. Figure 5.4 and Figure 5.5). It
can be noted again here also that the models trained with the pooled datasets performed the
best, which is a common property of all machine learning methods — the more data the better

the predictions.
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6. Results and Discussion

According to the previously presented performance metrics of various models, it can be
concluded that the MG GP model trained with pooled data has shown the best predictive
performance (c.f. Table 5.5), with high achieved R? values by relatively compact model
expression’s length and depth. Thus, the model developed by using the MG GP method by
employing the pooled CVT dataset for training is considered as the best performing model and
is thoroughly analysed and presented.

The best performing model, developed by using MG GP, is assessed next on the testing
dataset of each analysed thin-film sample material individually. In Table 6.1 are thus presented
the resulting performance metrics parameters of the selected best MG GP model trained on the
pooled data. The reported R? values allow evidencing a high predictive performance in the
range from 0.72 for TiO2 to 0.91 for the Al sample, which is comparable to the best ML model
— the SVR. The segregated performance test of the MG GP model shows also a relatively low

variance of RMSE and a low MAE error for all the considered thin-film samples.

Table 6.1 Predictive performance of selected MG GP model trained on pooled data for each

thin-film sample material.

Sample RMSE MAE  R?
Al 1.04 0.774 0.909
AlOs 0552 0.450 0.760
MoS; 2.43 2.06 0.736
TiO2 2.19 151 0.725
SS 1.20 0.938 0.848

MG GP models are herein selected as best individuals from a population of 5000 models
from each training run, which corresponds to a 10 times repeated 10-fold cross validation for
50 genes used in the multi-gene model. With the goal of minimizing the developed model’s
complexity and the respective 1-R? metrics value, the selection of model is performed here by
defining a Pareto frontier, as shown in Figure 6.1. The best selected model, i.e., that whose
performance metrics are shown in Table 5.7, satisfying the minimal values on the Pareto
frontier, is highlighted here. The respective model is then a mathematical expression involving
eight variables, the three main variable parameters (i.e., the considered variable process
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parameters F, ¢ and v) and five material class variables (dummy-variables) defining each

material as a binary class.

1-R? (testing)

Best performing model

0 200 400 600
Expressional complexity

Figure 6.1 Selected symbolic regression MG GP model on a Pareto frontier of expressional

complexity vs. the 1-R? performance value on a test dataset.

The resulting optimum-case mathematical expression, with predictive performance metrics
as shown in Table 6.1, can be represented in the form of equation (5.9) linking the value of the
nanometric friction force Fs to the considered process variables and parameters related to the
type of the considered thin-film material, showing its relative complexities, but also, when
compared to conventional ML models, providing an invaluably simpler and more user-friendly
predictive tool to be used in practical applications outlined in the introductory parts of the thesis:

F. =0.04559-F —0.0008751-v—0.1808-9+2.824-X, +4.512- X, —

—-15.67-X, —21.07-x, +1.544- %, —0.3031- - X, +

+0.02764 - (3 + X, + X, + X;)° +0.02599 - (3 + X, + X, +3.994)° — (5.9)
—0.03376- F, - x,° +0.07963- 3-X,” +0.0005558 ($+ 2- X, +3.944)° —

~0.4198-$* —0.05406- 9° +0.4198- x,* —0.0001781- F_-9-x, —15.92

The developed expression (5.9) is actually a regression model, and it has to be scrutinized
further in order to be confirmed as a trustworthy model for the prediction of the nanometric
friction force. It is important to investigate first, as shown in Figure 6.2, the actual scatter of the
predicted vs. the actual (experimental) data. The good fit of a model must ideally be
approaching the R? value of 1, which is depicted in Figure 6.2 as a straight 45° line, on which

all the experimental observations would lie if there would be no deviations of the measurements
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and the model would perfectly predict the considered physical phenomenon. Actually, as stated
by George E. P. Box [28]: “All models are wrong, but some are useful”, as all models are
imperfect, the developed model shows a relatively small scatter of the predictions of the training
data shown in Figure 6.2a, and testing data in Figure 6.2b. More important here is the testing
data prediction because it represents true predictive performance of the developed model since
the test data is unseen, i.e., not used for training and thus no bias exists. The fit of predicted test

values and experimental data shows a good linear trend of predictions vs. experimental data,

while the accumulation of points is tight around the R?=1 line.
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Figure 6.2 Fit of the predicted values vs. experimental data for the main (training) dataset (a),

and the test dataset (b) of the model described by equation (5.9).

In order to be able to successfully predict future measured data, the developed model must
also reflect the stochastic properties (as any good predictive model). This is statistically tested
by analysing the residual plots such as those shown in Figure 6.3. Residual plots depict the
scatters of the residuals, i.e., the difference between the predicted and the actual (experimental)
value [49]. The goal is to observe stochastic, random distributions of these points. If there are
any regularities, in the form of a curve or a linear relationship, the model would not be fit for
use, since this kind of predictive residuals indicate a heavy bias in the model. As shown in
Figure 6.3a, where the lot of residuals for the training data is depicted, and in Figure 6.3b,
showing the plot of residuals for the testing data, good stochastic and random properties are
achieved. When the distribution of the residuals for both data sets is considered (Figure 6.3c)

the Gaussian distribution of the residuals is confirmed, demonstrating good normality.
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Figure 6.3 Plot of residuals of the best performing model on the main (training) dataset (a) and

the test dataset (b). The distribution of residuals shows good normality for both datasets (c).
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Figure 6.4 Distributions of predicted and experimental data for the main (training) dataset (a),
and the test dataset (b).

The performances of the developed model can be assessed also by analysing the distribution
of the predicted values and comparing it to the experimentally obtained data distribution.
Overlaid distributions of predicted and experimental data are hence shown in Figure 6.4 for
both pooled training and testing datasets (the depicted histogram bins are 1 nN wide). The
distributions show an equal mean value for the training set, which confirms an extremely good
fit. On the other hand, the more important test dataset fit shows also a good fit, although in this
case there is a minor shift of the mean of the distribution of the predictions, which is caused by
slightly overestimated prediction values.

As in the case of the methodology used previously (cf. the above Section 5.6), the fit of the
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model to each of the analysed materials in the MC test datapoints, i.e., its ability to predict the
un-seen real-world experimental data of nanoscale friction force Fr in dependence on the
considered process parameters Fy, v, and $, will be considered next to confirm the predictive
performance w.r.t. the respective uncertainty of the data. In Figure 6.5a and b are thus depicted
the predictions and the experimental data for the ALD synthesized Al.Oz and TiO, samples. It
can hence be clearly seen that the prediction for the Al.O3 sample predominantly lie within the
six-sigma extent of the experimental data, with only a slight deviation in some of the
intermediate points. In the case of the TiO, sample, although the fit on the first two data points
is perfect, in general the predictions show relatively high deviations from the experimental
points, which was already noted earlier for almost all the considered models, and is due to the

nature of this sample’s data distribution.
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Figure 6.5 Predictive performances of the best developed MG GP model on the MC test dataset
for the ALD synthesized samples: Al2Os (a) and TiO; (b).

The fits of the model represented by equation (5.9) on the experimental test (MC) data for
the PLD synthesized Al, MoS; and SS thin-film samples is, in turn, shown in Figure 6.6a, b and
c, respectively. These plots show a remarkable fit quality for the considered samples. The Al
sample is hence fitted within a two-sigma range in almost all experimental points. The MoS:
sample’s data are fitted also extremely well, bearing especially in mind some issues related to
this material reported earlier when using several of the considered predictive models. The SS

sample results in a slightly bigger deviation in the predictions, but still the majority of the
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predicted points follow closely the trends of the experimental data.
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Figure 6.6 Predictive performances of the best developed MG GP model on MC test dataset for
the PLD synthesized samples: Al (a), MoS; (b) and SS (c).

In Figure 6.7 are shown next the surface plots of the nanoscale friction force Fr values
obtained by applying the model of equation (5.9) when two of the process parameters are varied
while the third one is kept constant, i.e., when the normal load is FL = 100 nN, sliding velocity
is v =250 nm/s, and temperature is 9= 40 °C. The plots show a similarity with respect to the
solutions obtained by employing the MLP and SVR models, but it is clear that the obtained
solutions in this case are much simpler and smoother. For all the ALD synthesized samples the
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influence of sliding velocity on friction is smooth, with a negative linear effect vs. temperature.
The influence of temperature, as observed in the previously considered ML models, for both
materials is again non-linear and stays quite stable with a variable sliding velocity or normal
load. Finally, in the right-most column, the effects of sliding velocity and normal load show

striking linear dependences as well as a general similarity to previously obtained solutions.
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Figure 6.7 Surface plots of the results obtained via the obtained MG GP model for constant

variables in columns (left to right): total load (FL = Fn+Fa), sliding velocity (v) and temperature

(9), for the ALD samples: Al>Oz (top row) and TiO2 (bottom row).

These similarities, permeated throughout the analysis based on the proposed MG GP model
of nanoscale friction, are also evident in Figure 6.8 for the PLD-synthesized samples. This thus
leads to a strong indication that the excellent fitness of the model is a general trend. For all the
samples in Figure 6.8 it is then also evident that the velocity dependence is linear, as is the
influence of normal load, while the effect of temperature is again nonlinear. What is more, an
interesting similarity with almost identical trends in the case of the TiO, and MoS samples

becomes evident, as do those for the Al and SS samples.
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Figure 6.8 Surface plots of the results obtained via the obtained MG GP model for constant

variables in columns (left to right): total load (FL = Fn+Fa), sliding velocity (v) and temperature

(9), for the PLD samples in rows (top to bottom): Al, MoS; and SS.

The results obtained by employing the developed MG GP model show, therefore,
undisputable and striking evidence of a similarity of the influence of the considered multiple
variable process parameters on nanoscale friction, which was not only a hard idea to grasp in
the earlier stages of this research, i.e., in experimental measurement phase, but also a result
never systematically attained in the available literature. After all the performed tests and
evaluations, it can thus be concluded with a relatively high degree of certainty that, at least for
all the tested thin-film materials, the developed model faithfully reproduces the experimental

results, but also (and most importantly) provides a robust predictive tool (and even a
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mathematical formulation!) for the dependence of the value of the nanoscale friction force on
the observed variable influencing parameters! In the previous section it is shown that the
proposed MG GP mathematical formulation allows predicting with high accuracy and fidelity
the value of nanoscale friction for a range of thin-films, and the influence of the most important
process parameters on this value. The hence obtained functional dependencies will be
thoroughly described and discussed in this part of the thesis, thus providing invaluable insights
into the tribological behaviour of thin-films in the nanometric domain.

The expression of the form given by equation (5.9) is thus further algebraically simplified in
terms of the class variables, i.e., by substituting each respective binary (one-hot) coding
parameter characteristic for each of the used thin-film sample material with values 0 and 1,
yielding simple equations that provide not only means for a complete characterization of the
influence of the process parameters on friction in the nanometric domain, but also a robust
predictive performance of the nanoscale friction force.

The finally developed predictive models of nanoscale friction and its dependence on the total
normal load FL= Fn+ Fa, on sliding velocity v, and on temperature 9, are therefore:

- for the Al sample:

F, = 0.04559-F, —0.0008751-v+1.141-9-0.0001781-F, - $—
—0.02279- 9% +0.0001258- $* —11.02
- for the Al203 sample:

F =0.01183-F,_ —0.0008751-v+0.8707 - $—0.0194 - %* +0.0001258- %> -9.67 (6.2)

(6.1)

- for the MoS; sample:
F. =0.04559-F —0.0008751-v+1.751- 9—0.02774- 9" +0.0001258- %° — 28.41 (6.3)

- for the TiO2 sample:
F. =0.04559-F —0.0008751-v+1.831-$—0.02774- 9% +0.0001258- %°* -33.81 (6.4)

- for the X39CrMo17-1 (SS) sample:

F =0.04559-F —0.0008751-v+1.141-$—-0.02274- $* +0.00013- # -12.72  (6.5)
The solutions of these expressions are shown graphically in Figure 6.9, allowing a visual
representation of the dependence of the nanometric friction force F¢ for all the thin-film
materials on the total normal load F. with variable temperatures 4 and sliding velocities v. It
can hence be concluded that all samples show fundamental similarities with a linear load

dependence, as predicted also by contact mechanics models with adhesion effects, such as the
DMT [46].
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Figure 6.9 Plots of the values of the nanoscale friction force Fs vs. the total normal load (FL =
Fn+Fa) for different values of the v and $for: Al (a), Al203 (b), MoS; (c), TiO2 (d) and SS (e)
as obtained from the proposed models.

The obtained linear dependencies allow evidencing the slight weakening effect of sliding
velocity, which was also experimentally proven in previous literature [44], [56], [76], [122],
[157]. This effect of diminishing friction with increasing sliding velocities is commonly
attributed to the lubricative effect of the water-vapour layer adhered on the surface of the
samples. Regarding the value of the sliding velocity effect, it can also be noted that, contrary to
the small weakening on Fs for most of the samples, for Al.O3 a broader scatter between the

parallel lines is obtained, i.e., a more pronounced negative dependence is present here.
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Figure 6.10 Plots of the values of the nanoscale friction force Fr vs. temperature 9 for different
values of v and FL = Fn+Fa for: Al (a), Al203 (b), MoS> (c), TiO2 (d) and SS (e) as obtained

from the proposed models.

The intricate interdependence of adhesion and friction is emphasised even more with these
findings. In fact, the depicted lines show a change of slope and of the y-intercept with changing
temperature, which is a direct consequence of the dominant effect of adhesion. What is more,
this effect is superimposed to the effect of the normal force itself, since, as discussed in the
above Section 3.5.2, at the nanometric scale the influence of the water meniscus force is

significant inducing an increase of the total contact forces.
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Figure 6.11 Plots of the values of the nanoscale friction force F¢ vs. sliding velocity v for
different values of 9 and of FL = Fn+Fa for: Al (a), Al2O3 (b), MoS: (c), TiO2 (d) and SS (e)

as obtained from the proposed models.

Since, on the other hand, the variability of temperature induces a change of the amount of
adsorbed water, i.e., the state of the meniscus, the adhesive forces also change and so does
consequently the total normal load.

The variability of the influence of temperature is also evident in the graphs of Figure 6.10,
as can be noticed from the distance between the depicted friction lines. A larger distance caused
by a change of temperature indicates then a clearly more accentuated temperature effect, which

is mostly visible on the graphs of the Al and Al>O3 thin-film samples.
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The influence of sliding velocity v on the value of the nanoscale friction force Fs is, finally,
depicted for all the considered thin-film samples in Figure 6.11. These graphs result in a bit
more difficult visualization, since there are two strong overlapping effects in the two remaining
dimensions. It is, nevertheless, obvious that the influence of velocity is predominantly small
and, as amply evidenced before, weakening, while the stronger nonlinear influence of
temperature 9 changes the absolute value of the velocity effect, but not the trends or the strength
of this effect. The influence of the total normal load F is also evident as a linear shift of the Fs
vs. v line groups, which result in increasing the value of the nanoscale friction force.

All the graphs of Figure 6.9, Figure 6.10 and Figure 6.11 show thus the values of the
nanoscale friction force Fr obtained by using the functional dependencies of the equations (6.1)
to (6.5) for the considered class of thin-film sample materials and all the analysed variable
process parameters. These graphs can be used as a graphical tool for determining the expected
value of Fs. On the diagrams are shown also vertical dashed and dotted boundary lines
indicating, respectively, the limits of the considered variables in the main (DoE-CVT) and test
(MC) datasets, which, considering that the models used to derive the graphs are trained and

tested only between these boundaries, provides a sort of a safety margin of their validity.
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7. Conclusions and Outlook

A thorough description of a structured methodology to the experimental determination of
nanometric friction performed under the concurrent influence of several influencing
parameters, namely of the normal forces, of sliding velocity and of temperature, is done in the
first phases of this work.* An advanced approach to the design of experimental measurements
is hence suggested and successfully implemented. The numerous issues involved in this
challenging task are systematically studied: the synthesis and characterisation of conventional
and novel thin film samples such as X39CrMo17-1, the importance of the calibration of the
used probes and of the variability of adhesion on this calibration, as well as the importance of
wear and adhesion of the probes themselves [128].

The results of the thus developed systematic approach provide important insights into the
general trends of the dependence of nanoscale friction on the multiple process parameters as
well as an indication of the respective correlations. An intricate concurrent dependence of
nanoscale friction on the variable parameters is hence obtained.

The DoE-CVT based experimental measurements described in the above Chapter 4 allowed
proving the marked significance of adhesion, especially in measurements with variable
temperatures, making thus necessary the introduction of corrections in the determined
calibration constants. Experimental data were then used to attain first-order trends, i.e., the
determination of correlation matrices for each of the considered influential parameter, allowing
to determine that the influence of sliding velocity on nanoscale friction is minimal, the effect
of temperature is noticeable, especially in terms of adhesion variability, while the influence of
the exerted normal force has a highly positive impacts on friction for all the used thin-film
samples.

Separately performed experimental measurements, based on MC routines and intended to
provide a testing dataset for the developed models, showed similar results as the above main
measurements. Given the fact that these are performed on samples that were not dried prior to
the measurements — yielding, hence, realistic habitual conditions, they provide, moreover, a

more difficult predictive challenge for the used advanced numerical models. The test datasets

4 As pointed out in the corresponding parts of the thesis (Chapters 3 and 4), this part of the work was thoroughly
described in a recent publication of the author of the thesis and his collaborators in a peer-reviewed scientific
paper [128], which was produced and published as part of the obligations foreseen in the curriculum of the
doctoral study of the Faculty of Engineering of the University of Rijeka, Croatia.
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confirmed thus the low impact of sliding velocity, a high positive impact of the total normal
load, and a high impact of temperature on nanometric friction.

These considerations allowed broadening next the insights on the impact of the multiple
variable parameters on nanometric friction performed by data mining incorporating multiple
machine learning methods on the obtained experimental datasets.

The data mining process allowed thus providing novel and invaluable insights into the
functional dependencies of each variable’s impact on the friction force at the nanoscale,
showing similarities and common treats to all the analysed thin-film samples, providing a strong
indication that a common basis for the analysed physical phenomenon exists and can be
mathematically described. The search for this common expression is done by employing genetic
programming — symbolic regression that allow attaining a single and rather simple
mathematical expression resulting in very high predictive performances. The developed
expression is considered as the main contribution and result of the research in the thesis.

This study thus finally contributed by attaining correlation functions linking the considered
process variables to the value of nanometric friction, thus providing not only an even deeper
insight into the studied phenomena made of complex interactions, but also provide invaluable,
novel and unprecedented contributions in the field of nanotribology. What is more, the
abundance of experimental results given in the appendices, the assessment of these via testing
on state-of-the-art numerical modelling methods, the resulting systematic evaluation of the
predictive performances of these numerical methods, and, finally, the original proposed model
with notably high predictive performances and of simple implementation, apt to be used for
practical applications, are all important scientific contributions of the thesis.

All this constitutes the preconditions and provides the means for a further in-depth
understanding and practical improvements in the field of nanotribology, and a novel insight
into this fundamental force of nature. This should allow eventually extending the formulation
of existing friction models to the nanometric domain, hence constituting the foundation for the
development of extended friction models and resulting advanced control typologies, thus
contributing to increasing the precision of the moving components and of positioning of
structural elements and systems to the actual nanometric range.

The results of the described research provide also means to “bridge the gap” from nanoscale
tribology to micro-, meso- and, on the upper spectrum of dimensionality, the macroscale
systems with friction, enabling therefore also the development and modification of the current
best control algorithms (as e.g., [5], [176]), but also with important potential applications to
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finite and boundary element simulation schemes involving frictional phenomena (in the current
state-of-the-art given e.g., in [19], [36], [74], [96], [120], [179]), multi-asperity contact models
(suchasine.g., [29], [144], [146], [169]), fractal surface models (e.g., [35], [124], [125], [183]),
comparison and validation of continuum methods (contact mechanics) (e.g., [78], [79], [113]),
multiscale methods (such as the [9], [98], [171]), and other practical applications.

On the lower end of the dimensionality spectrum, the measurements and models given in the
thesis provide an important validation tool for the molecular, atomic, and quantum effects of
nanoscale friction. The herein given results provide thus means for assessing and validating the
results obtained by using molecular dynamics models involving the atomic structures of the
surfaces in contact. In fact, the possibility to compare the results obtained in the thesis to
molecular modelling calculations performed at the Molecular Simulations Engineering

(MOSE) laboratory of the University of Trieste, Italy [161] is already under way.
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T mean of the variable x

Yi predicted value
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Appendix A
CVT-based Measurement points

Table A.1 Distribution of measurement points in the considered multidimensional experimental

space (Fn, v and 9) as determined by applying CVT-sampling.

Meas. Meas.
] vinm/s]  9[°C] Fn[nN] ) vinm/s] $[°C] Fn[nN]
point no. point no.
1 65 25 76 26 253 50 131
2 412 25 36 27 459 50 86
3 206 26 91 28 117 51 134
4 321 26 113 29 179 51 29
5 428 26 77 30 311 51 66
6 451 26 125 31 356 55 103
7 58 27 27 32 443 56 22
8 220 28 136 33 325 57 34
9 283 28 36 34 71 58 72
10 74 29 130 35 440 58 55
11 168 29 54 36 419 59 134
12 176 30 21 37 215 60 86
13 290 32 72 38 442 65 105
14 358 32 138 39 56 66 118
15 55 36 78 40 79 67 30
16 174 38 108 41 200 69 137
17 438 38 32 42 310 69 128
18 452 39 114 43 234 71 33
19 418 40 74 44 310 72 77
20 291 42 27 45 188 73 104
21 297 42 103 46 104 74 69
22 182 44 66 47 401 74 29
23 59 45 32 48 442 74 77
24 425 45 135 49 431 75 125
25 61 46 107 50 81 76 137
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Appendix B
CVT-based Ff and FA Measurements

This appendix contains the measured and processed experimental data obtained at
CVT-based measurement points. The tables presented further contain Frand Fa experimental
measurements for each material in each CVT-based measurement point (CVT column) for

all repetitions (Meas. 1 to Meas. 5 columns), and calculated values of mean ( F' column),
median (F column) , standard deviation (o column), relative standard deviation (RSD
column) [106], skewness (y, column) and kurtosis (v, column), calculated according to

expressions 5.3 and 5.4 respectively. Data presented in this appendix is used for training all
models.
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Appendix C
MC-based Measurement Points

Table C.1 Distribution of measurement points in the considered multidimensional experimental

space given by the varying process parameters v, ¢ and Fn, as determined by applying the MC-

based sampling methodology for obtaining the test experimental dataset.

Mesrement  mis] 91°C1 Fu [N
point no.
1 429 24 51
2 237 27 59
3 40 27 25
4 57 29 28
5 48 32 101
6 430 39 13
7 297 42 60
8 492 45 98
9 84 51 62
10 317 52 140
11 216 61 49
12 68 68 135
13 476 73 112
14 323 76 104
15 458 77 150
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Appendix D
MC-based Ff and FA Measurements

This appendix contains the measured and processed experimental data obtained at MC-
based measurement points. The tables presented further contain Fr and Fa experimental
measurements for each material in each MC-based point (MC column) for all repetitions
(Meas. 1 to Meas. 5 columns), and calculated values of mean (F column), median (F
column) , standard deviation (o column), relative standard deviation (RSD column) [106],

skewness (7, column) and kurtosis (v, column), calculated according to expressions 5.3

and 5.4 respectively. Data presented in this appendix is used for testing predictive
performance of all developed models.
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