

CURRICULUM GRADUATE UNIVERSITY STUDY OF NAVAL ARCHITECTURE

Rijeka, April 2021

1. CURRICULUM DESCRIPTION

1.1. The list of compulsory and elective courses with the number of active classes required for their performance and ECTS credits

1. semester								
	Subject title	Subject title Hours / week						
			aT	IT	dT	L+T	ECIS	
	Mathematics for Engineers	3	2			5	6	
	Ship Structural Design	2	1		1	4	5	
	Marine Electrical Engineering	2	1			3	4	
	Methodology of Ship Production	2	1		1	4	5	
	Numerical Methods and Optimization	2		2		4	4	
Subjects from elective	group Design and Construction of	Floatin	g Obje	cts:				
-	Marine Hydrodynamics II	3			2	5	6	
Subjects from elective group Technology and Organization of Naval Architecture:								
	Technological Process of Shipbuilding	2	1		1	4	6	
	TOTAL						30	

L - lectures, aT – auditory tutorials, IT – laboratory tutorials, dT – design tutorials.

2. semester								
	Subject title		ECTS					
	Subject title		aT	IT	dT	L+T	ECIS	
	Ship Systems	3		1		4	5	
	Project I ¹					2	5	
	Elective Subject I					4	5	
	Free Elective Subject I ²						5	
	Professional Practice II						5	
Subject from elective	group Design and Construction of F	loating	Objec	ts:				
	Ship Structural Analysis	2			2	4	5	
Subject from elective group Technology and Organization of Naval Architecture:								
	Ship Outfitting and Repair	3			1	4	5	
	TOTAL 18						30	

¹ Enroll one of the professional subjects in the 1st and 2nd semester.

² Enroll one subject in the 2nd semester from other elective groups or from other graduate studies at the Faculty of Engineering University of Rijeka, worth 5 ECTS or more.

Elective Subject I								
	Subject title		Hours / week					
	Subject title		aT	IT	dT	L+T	ECIS	
Subjects from elective group Design and Construction of Floating Objects:								
	Offshore Structures and Vessels	2	2			4	5	
	Small Craft Construction	2			2	4	5	
	Dynamics of Offshore Structures	2	2			4	5	
Subjects from elective group Technology and Organization of Naval Architecture:								
	Offshore Structures and Vessels	2	2			4	5	
	Small Craft Construction	2			2	4	5	

3. semester									
	Subject title	Hours / week							
	Subject title		aT	IT	dT	L+T	ECIS		
	Ship Design I	3	1			4	5		
	Project II ³					2	5		
	Elective Subject II						5		
	Free Elective Subject II ⁴						5		
Subjects from elective group Design and Construction of Floating Objects:									
	Ship Stability in Exploitation	3	2			5	5		
	Seakeeping	3	2			5	5		
Subjects from elective gr	oup Technology and Organizatio	n of Na	val Arc	chitect	ure:				
	Quality Management and Metrology	2	2			4	5		
	Shipyard Design	2	1		1	4	5		
	TOTAL	TOTAL					30		

³ Enroll one of the professional subjects in the 1st, 2nd and 3rd semester, except already enrolled as Project I.

⁴ Enroll one subject in the 3rd semester from other elective groups or from other graduate studies at the Faculty of Engineering University of Rijeka, worth 5 ECTS or more.

Elective Subject II								
	Subject title	Hours / week					ECTS	
	Subject title	L	aT	IT	dT	L+T	ECIS	
Subjects from elective group Design and Construction of Floating Objects:								
	Shipyard Design	2	1		1	4	5	
	Offshore Operations	2	2			4	5	
Subjects from elective gr	Subjects from elective group Technology and Organization of Naval Architecture:							
	Ship Stability in Exploitation	3	2			5	5	
	Welding Engineering	2		2		4	5	

4. semester								
	Cubic et title	Hours / week						
	Subject title	L	aT	IT	dT	L+T	ECIS	
	Elective Subject III Free Elective Subject III ⁵ Graduate Work						5 5 10	
Subjects from elective group Design and Construction of Floating Objects:								
	Ship Design II	1	1		2	4	5	
	Marine Propulsion Engines	2	1			3	5	
Subjects from elective gr	oup Technology and Organizatio	n of Na	val Arc	chitect	ure:			
	Project Management in Shipbuilding	2	1		1	4	5	
	Shipyard Organization and Management	2	1			3	5	
	TOTAL 15						30	

⁵ Enroll one subject in the 4th semester from other elective groups or from other graduate studies at the Faculty of Engineering University of Rijeka, worth 5 ECTS or more.

Elective Subject III								
	Cubic et title		Hours / week					
	Subject title	L	aT	IT	dT	L+T	ECIS	
Subjects from elective group Design and Construction of Floating Objects:								
	Project Management in Shipbuilding	2	1		1	4	5	
	Small Craft Design	2	2			4	5	
	Ship Negotiation Process	2	1			3	5	
Subjects from elective group Technology and Organization of Naval Architecture:								
	Ship Negotiation Process	2	1			3	5	
	Small Crafts Equipment	2		1	1	4	5	

GRADUATE UNIVERSITY STUDY OF	Hours	ECTS
NAVAL ARCHITECTURE TOTAL	82	120

Basic description					
Course title	Dynamics of Offshore Structures				
Study programme	Graduate University Study of Naval Architecture				
Course status	optional				
Year	1.				
ECTS credits and	ECTS student 's workload coefficient 5				
teaching	Number of hours (L+E+S) 30+30+0				

1.1. Course objectives

Understanding stochastic models of sea waves, current and wind loads on offshore constructions. The ability to estimate the probability of exceedance for certain dynamic effects criteria. Developing the ability to work in small groups (teamwork).

1.2. Course enrolment requirements

None.

1.3. Expected course learning outcomes

Specify the basic methods of dynamic analysis of offshore structures. Properly explain, and interpreted the basic parameters of the waves as a random process. Explain stochastic model of action of waves, currents and wind on offshore structures. Indicate the design and operational parameters which have an influence on the dynamic response of offshore structures on the sea waves. Describe the procedures for short-term and long-term prediction of the dynamic response of offshore structures of offshore structures. Calculate the probability of exceedance of certain dynamic effects.

1.4. Course content

Dynamic aspects of importance for various offshore structures. Methods of analysis. Fundaments of probabilistic processes. Sea waves and sea states. Wave spectrums. Wave forces on slender structures (Morison's equation). Wave forces on large structures (diffraction theory). Effect of currents and winds. Response of a one-degree-of-freedom system. Multi-degree-of-freedom linear system. Deterministic and stochastic design methods. Response of offshore structures on sea waves. Short-term and long term prediction.

1.5. Teaching methods		 lectures seminars and worksho exercises long distance education fieldwork 	ops on	_ indivi _ multi] labora _ menti _ other	dual as media atories orship	signment and network	
1.6. Comments	5	-					
1.7. Student's d	obligat	tions					
Course attendance,	Course attendance, activity, studying.						
1.8. Evaluation of student's work							
Course	2	Activity/Participation	Semi	nar paper	0.5	Experimental	

attendance					14	vork	<u> </u>
Written evam	1	Oral exam		Fssav		esearch	
Project	-	Sustained knowledge check	1.5	Report	P	ractice	
Portfolio		Homework					
1.9. Procedui	re and e	examples of learning outcor	ne assi	essment i	n class and at the f	nal exam	
Course attend	dance, s	eminar paper, activity, con	itinuou	ıs knowle	dge testing, writter	and oral exam.	
1.10. A	ssigned	reading (at the time of the	e subm	nission of	study programme p	proposal)	
Prpić-Oršić J.: Basic ship dynamics, Faculty of Engineering University of Rijeka, Fintrade & Tours, 2009. (in Croatian) Journee, J.M.J., Massie, W.W.: Introduction in Offshore Hydromechanics, Delft University of Technology, Delft Netherlands, 2001							
1.11. C	1.11. Optional / additional reading (at the time of proposing study programme)						
Prpić-Oršić J., Čor Brebbia, C.A., Wa	ić V.: Se lker, S.:	eakeeping, Zigo, University Dynamics Analysis of Offsh	of Rije nore St	ka, 2006. ructures,	(in Croatian) Newnes-Butterwot	hs, London, 197	[°] 9.
1.12. N attendin	lumber g the co	of assigned reading cop	ies wit	th regard	to the number	of students cu	irrently
	-	Title			Number of copies	Number studen	of ts
Prpić-Oršić J.: E University of Rijel	Basic sł ka, Fintr	nip dynamics, Faculty of ade &Tours, 2009. (in Croa	f Engi atian)	neering	10	9	
Journee, J.M.J., Massie, W.W.: Introduction in Offshore Hydromechanics, Delft University of Technology, Delft, Netherlands, 2001.					Available on 9 internet		
1.13. Quality monitoring methods which ensure acquirement of output knowledge, skills and competences							

Basic description					
Course title	Graduate Work				
Study programme	Graduate University Study of Naval Architecture				
Course status	compulsory				
Year	2.				
ECTS credits and	ECTS student 's workload coefficient 10				
teaching	Number of hours (L+E+S) -				

1.1. Course objectives

Graduate work is an individual assignment and verification of student expertises, which should show the appropriate level of engineering skills for individually solving specific professional task.

1.2. Course enrolment requirements

Enrolled course from which the Graduate Work is selected.

1.3. Expected course learning outcomes

Apply acquired knowledge, expertises and skills of the content of Graduate Work associated course. Solve practical task. Acquire competence for individually solving specific professional task.

1.4. Course content

The content of the Graduate Work is based on the application of acquired knowledge from educational programs at the graduate university studies. Final thesis can be specified from a particular course specific professional content and exceptionally from course that belongs to the group of shared content, when it represents a broader entity with a particular course specific content of the studies. Student enrollers the Graduate Work by enrolling the last semester. Thesis of the Graduate Work is establishes by Commission for Graduate Works, based on suggestion of teacher who will mentor the Graduate Work.

	lectures	🛛 individual assignment
1.5. Teaching methods	seminars and workshops	multimedia and network
	exercises	laboratories
	Iong distance education	🔀 mentorship
	🗌 fieldwork	Other
1.6. Comments		

1.7. Student's obligations

Attending the consultation, individually solving task and writing the Graduate Work report.

1.8. Evaluation of s	tudent's work					
Course attendance	Activity/Participation		Seminar paper		Experimental work	
Written exam	Oral exam		Essay		Research	
Project	Sustained knowledge check		Report		Practice	
Portfolio	Individual task solving	8	Final work in written form	2		

1.9. Procedure and examples of learning outcome assessment in class and at the final exam

Assesses and evaluates the accuracy and completeness of a given task solving process, the Graduate Work written report, and its oral presentation

1.10. Assigned reading (at the time of the submission of study programme proposal)

1.11. Optional / additional reading (at the time of proposing study programme)

1.12. Number of assigned reading copies with regard to the number of students currently attending the course

	Title		Number of copies	Number of students
1.13. com	Quality monitoring methods which ensure petences	acqı	iirement of output kr	nowledge, skills and

Basic description				
Course title	Marine Electrical Engineering			
Study programme	Graduate University Study of Naval Architecture			
Course status	compulsory			
Year	1.			
ECTS credits and	ECTS student 's workload coefficient	4		
teaching	Number of hours (L+E+S)	30+15+0		

1.1. Course objectives

The course is a professional discipline for all the students of naval architecture. The goal is to introduce the students to ships electric devices.

1.2. Course enrolment requirements

None.

1.3. Expected course learning outcomes

Define and explain the requirements for ships electric devices. Evaluate systems for electric power generation on crafts. Evaluate systems for electric power distribution on crafts. Define and explain technical measures for protection from electric current shock. Apply measures for personal safety on work with ships electric power system. Analyse electric protections of ship electric devices. Define and explain ships electric drives. Define and explain ships system.

1.4. Course content

Requirements for ships electric devices. Generation and transformation of electric energy. Distribution and transmission of electric energy. Electric energy consumption on ship. Electric propulsion. Safety. Monitoring, inspection, disturbances and maintenance of ships electric power system.

	🔀 lectures	individual assignment
1.5. Teaching methods	Seminars and workshops	multimedia and network
	🛛 exercises	laboratories
	Iong distance education	mentorship
	🗌 fieldwork	other
1.6. Comments		

1.7. Student's obligations

Course attendance, activity, seminar paper, studying.

1.8. Evaluatio	on of stu	udent's work					
Course attendance	1.5	Activity/Participation		Seminar paper	0.5	Experimental work	
Written exam	1	Oral exam		Essay		Research	
Project		Sustained knowledge check	1	Report		Practice	
Portfolio							

1.9. Procedure and examples of learning outcome assessment in class and at the final exam

Course attendance, activity, seminar paper, continuous knowledge testing (two mid-term exams), written exam.

1.10. Assigned reading (at the time of the submission of study programme proposal)

I. Vlahinić: Electrical systems of vessels, Faculty of Maritime Studies, Rijeka 1988B. Skalicki, J. Grilec: Marine electrical devicei, Faculty of Mechanical Engineering and Naval Architecture, Zagreb 2000

1.11. Optional / additional reading (at the time of proposing study programme)

D.T. Hall: Practical Marine Electrical Knowledge, Witherby London 1999 IEC International Standard

Croatian Register of Shipping

1.12. Number of assigned reading copies with regard to the number of students currently attending the course

Title	Number of copies	Number of students
I. Vlahinić: Electrical systems of vessels, Faculty of Maritime	3	
Studies, Rijeka 1988		
B. Skalicki, J. Grilec: Marine electrical devicei, Faculty of	3	
Mechanical Engineering and Naval Architecture, Zagreb 2000		
		1 1 1.11 1

1.13. Quality monitoring methods which ensure acquirement of output knowledge, skills and competences

Basic description					
Course title	Marine Hydrodynamics II				
Study programme	Graduate University Study of Naval Architecture				
Course status	optional				
Year	1.				
ECTS credits and	ECTS student 's workload coefficient	6			
teaching	Number of hours (L+E+S)	45+30+0			

1.1. Course objectives

The acquisition of specific competencies dealing with ship resistance and propulsion. Ability to solve a given problem in order to determine the ship resistance, the required ship's main engine power and the propeller characteristics. Acquiring specific knowledge in ship's controllability.

1.2. Course enrolment requirements

None.

1.3. Expected course learning outcomes

Explain the influence of the hull form and appendages on ship resistance. Explain the features of the propeller design. Preliminary calculation of the ship resistance, the required main engine power and the ship screw propeller together with the screw propeller drawing of a chosen ship. Analyze the impact of ship hydrodynamic characteristics on ship energy efficiency requirements. Explain the forces acting on fast motor boats and sailing boats. Explain the forces and moments on the ship's rudder. Interpret correctly the term of the ship controllability and describe the ship controllability experiments.

1.4. Course content

Effects of the hull form and appendages on ship resistance. Added resistance due to waves. Computational models for the determination of the hydrodynamic characteristics of the ship hull. Propeller design. Energy efficiency of a ship. Hydrodynamic lift. Flow over an inclined flat plate. The forces on a planing craft. Resistance components. Dynamic instability of planing crafts. Flow around a flat foil. The forces on a sailing boat. Resistance components. The balance between hydrodynamic and aerodynamic forces. Ship controllability. Course keeping. Maneuvering. Speed changing. Controllability in the ship design spiral. Control loop and basic equations of motion. Motion stability definitions. Rudder forces and moments. Maneuverability activities of IMO. Maneuvering trials. Turning test. Z-maneuver test. Direct and reversed spiral test. Pull-out test. Stopping test. Other tests. Mathematical maneuvering models. Model tests.

1.5. Teaching methods		 lectures seminars and worksho exercises long distance education fieldwork 	ops on	individus multime laborato mentors other	al assignment dia and network pries hip	
1.6. Commen	ts					
1.7. Student's obligations						
Attendance at lectures, activity in class, project assignment, self learning.						
1.8. Evaluation of student's work						
Course	2.5	Activity/Participation	0.5	Seminar paper	Experimental	

attendance					work	
Written exam	0.5	Oral exam	0.5	Essay	Research	
Project	1	Sustained knowledge check	1	Report	Practice	
Portfolio						

1.9. Procedure and examples of learning outcome assessment in class and at the final exam

Class attendance, class activity, project assignment, continuous knowledge assessment (mid-term exams), written and oral examination.

1.10. Assigned reading (at the time of the submission of study programme proposal)

Lewis, E. V., (ed.), Principles of Naval Architecture, Vol. II – Resistance, Propulsion and Vibration, The Society of Naval Architects and Marine Engineers, Jersey City, 1988.

Lewis, E. V., (ed.), Principles of Naval Architecture, Vol. III - Motions and Conrollability, The Society of Naval Architects and Marine Engineers, Jersey City, 1989.

1.11. Optional / additional reading (at the time of proposing study programme)

Blount, D. L., Performance by Design: Hydrodynamics for High-Speed Vessels, Donald L. Blount, Virginia Beach, 2014.

Larsson, L., Eliasson, R. E.: Principles of Yacht Design, Second Edition, Adlard Coles Nautical, 2000.

1.12. Number of assigned reading copies with regard to the number of students currently attending the course

Title	Number of copies	Number of students
Lewis, E. V., (ed.), Principles of Naval Architecture, Vol. II – Resistance, Propulsion and Vibration, The Society of Naval Architects and Marine Engineers, Jersey City, 1988	1	15
Lewis, E. V., (ed.), Principles of Naval Architecture, Vol. III - Motions and Conrollability, The Society of Naval Architects and Marine Engineers, Jersey City, 1989.	1	15
1.13. Quality monitoring methods which ensure acqu	irement of output k	nowledge, skills and

competences

Basic description				
Course title	Marine Propulsion Engines			
Study programme	Graduate University Study of Naval Architecture			
Course status	optional			
Year	2.			
ECTS credits and	ECTS student 's workload coefficient	5		
teaching	Number of hours (L+E+S)	30+15+0		

1.1. Course objectives

Adoption of theoretical knowledge and development of skills to solve practical problems in the field of marine propulsion machinery, determination of necessary power and selection of propulsion engines, their systems and equipment.

1.2. Course enrolment requirements

None.

1.3. Expected course learning outcomes

Analysis of ship characteristics and navigation conditions for the selection of the ship propulsion plant. Application of the laws of thermodynamics and mechanics to the process analysis in steam turbine ship propulsion plant. Analysis of the processes in the steam turbine plant and its systems and their impact on the characteristics of the plant. Analysis of processes in gas-turbine ship propulsion plant of the ship. Analysis of the processes of gas-turbine plant and its systems and their impact on the characteristics of the plant and its systems and their impact on the characteristics of the laws of thermodynamics and fluid mechanics to processes of internal combustion engines. Analysis of the operation of the internal combustion engines and its equipment and their impact on the characteristics of the engine system as a whole. Analysis of the influential parameters on the overall characteristics of propulsion plant and its operating costs.

1.4. Course content

Introduction to marine propulsion engines. The basis for calculation of ship propulsion power and selection of the propulsion engines. Ship steam generators. Marine steam turbine. Equipment and systems of marine steam turbine. Steam turbine propulsion plant. Nuclear propulsion. Gas turbines and their application in ship propulsion. Internal combustion engines. Dynamics of the crankshaft mechanism. Diesel engine operation. Exchange of the working fluid. Turbocharging. Preparation and combustion of the fuel-air mixture. Application of heavy fuel. Design of marine diesel engines. Engines for propulsion of small vessels. The combined systems for ship propulsion. Diesel-electric propulsion. Auxiliary equipment and systems. Marine engine rooms. Rational use of energy. Emissions and environmental protection.

1.5. Teaching methods	 lectures seminars and workshops exercises long distance education fieldwork 	 individual assignment multimedia and network laboratories mentorship other 			
1.6. Comments	None				
1.7. Student's obligations					

Course attendance, activity, homework, studying.

1.8. Evaluation of student's work

	,						
Course attendance	1.5	Activity/Participation		Seminar paper	0.5	Experimental work	
Written exam	1	Oral exam	1	Essay		Research	
Project		Sustained knowledge check	1	Report		Practice	
Portfolio		Homework					

1.9. Procedure and examples of learning outcome assessment in class and at the final exam

Course attendance, activity, homework, continuous knowledge testing (two mid-term exams), written and oral exam.

1.10. Assigned reading (at the time of the submission of study programme proposal)

Grljušić, M.: Marine Prpulsion Engines, Fakultet elektrotehnike, strojarstva i brodogradnje u Splitu, 2000. (in Croatian)

Tireli, E.: Marine Heat Turbines, Sveučilište u Rijeci, 2001. (in Croatian)

Parat, Ž.: Marine Internal Combustion Engines, Sveučilište u Zagrebu, 2005. (in Croatian)

1.11. Optional / additional reading (at the time of proposing study programme)

Grljušić, M.: Internal Combustion Engines, FESB, Split, 2000. (in Croatian)

1.12.	Number of	assigned	reading	copies	with	regard	to	the	number	of	students	currently
atter	nding the course	2										

Title	Number of copies	Number of students
Grljušić, M.: Internal Combustion Engines, FESB, Split, 2000. (in Croatian)	1	20
1.13. Quality monitoring methods which ensure acqu competences	irement of output ki	nowledge, skills and

Basic description					
Course title	Mathematics for Engineers				
Study programme	Graduate University Study of Naval Architecture				
Course status	compulsory				
Year	1.				
ECTS credits and	ECTS student 's workload coefficient 6				
teaching	Number of hours (L+E+S) 45+30+0				

1.1. Course objectives

Acquiring basic knowledge in mathematical analysis and vector analysis.

1.2. Course enrolment requirements

None.

1.3. Expected course learning outcomes

Define and correctly interpret basic notions in trigonometric polynomials approximations, partial differential equations, and vector analysis. Compute approximations of some functions with trigonometric polynomials, determine analytical solutions for typical equations of mathematical physics on simple domains, and find solutions of problems in vector analysis. Give physical interpretation for: typical equations of mathematical physics, gradient of scalar fields, divergence and rotor of vector fields, solenoid and conservative fields, and curve and surface integrals.

1.4. Course content

Approximation of functions with trigonometric polynomials. Applications.

Partial differential equations of mathematical physics. Applications.

Vector analysis Applications.

Curve integrals. Surface integrals. Triple integrals. Integral theorems Applications.

1.5. Teaching methods	 lectures seminars and workshops exercises long distance education fieldwork 	 individual assignment multimedia and network laboratories mentorship other
1.6. Comments	-	

1.7. Student's obligations

Course attendance, activity/participation, studying

1.8. Evaluation of student's work

Course attendance	2.5	Activity/Participation		Seminar paper	Experimental work	
Written exam	0.5	Oral exam	0.5	Essay	Research	
Project		Sustained knowledge check	2.5	Report	Practice	
Portfolio						

1.9. Procedure and examples of learning outcome assessment in class and at the final exam

Course attendance, activity/participation, mid-term exams, and written and/or oral exam.

1.10. Assigned reading (at the time of the submission of study programme proposal)

Kreyszig, E.: Advanced Engineering Mathematics, John Wiley & Sons, Inc., 1993 Štefan Trubić M., Črnjarić-Žic N., Maćešić S., Mathematics for engineers, course material

(on-line available on e-course)

Pavčević M.: Vector Analysis, (FER) Biblioteka Bolonja, Element, 2007. (In Croatian)

1.11. Optional / additional reading (at the time of proposing study programme)

Farlow J. S., Partial differential equations for scientists and engineers, Dover publication Inc., 1993

1.12. Number of assigned reading copies with regard	d to the number og	f students currently	
attending the course			
THE	Number of conice	Number of	
litie	Number of copies	students	
Kreyszig, E.: Advanced Engineering Mathematics, John Wiley &	Э	20	
Sons, Inc., 1993	3	50	
Štefan Trubić M., Črnjarić-Žic N., Maćešić S., Mathematics for	150	20	
engineers, course material (on-line available on e-course)	150	30	
Pavčević M.: Vector Analysis, (FER) Biblioteka Bolonja, Element,	n	20	
2007. (In Croatian)	2	30	
1.13. Quality monitoring methods which ensure acqu	irement of output ki	nowledge, skills and	

competences

Basic description						
Course title	Methodology of Ship Production					
Study programme	Graduate University Study of Naval Architecture					
Course status	compulsory					
Year	1.					
ECTS credits and	ECTS student 's workload coefficient 5					
teaching	Number of hours (L+E+S) 30+30+0					

1.1. Course objectives

Introducing student with examples that illustrate the use of methods and techniques for production of vessels, and with the analysis of the ship production methodology applications at shipyards, according to defined learning outcomes.

1.2. Course enrolment requirements

None.

1.3. Expected course learning outcomes

To analyze basic characteristics of the ship production process. Analyze the integration of ship hull construction, outfitting and painting. To interpret the interaction between design process methodology, preparation processes and ship production processes. To analyze the possibilities of operations research methods application. Argue and describe contemporary concepts of shipbuilding processes design and management. Define the constraints for ship elements fabrication, interim products, and ship production and outfitting. Analyze and describe the concept of assembly shipyard. Analyze and describe the concept of a virtual shipyard and simulation modelling. Analyze and define the product and production design methodology.

1.4. Course content

Basic characteristics of ship production process. Integration of hull production, outfitting and painting. Methodology for designing a product and process. Shiproduction technology design. Operational research methods applications. Methodology of ship production preparation procedures. Contemporary concepts of shipbuilding processes design and management. Elements fabrication, subassembly, assembly, erection and outfitting analysis. Space - zone outfitting. Process accuracy. Digital twin of product and process. Digital/Smart Shipyard. Ship structure and technology informations design and modelling in specialised shipbuilding softwer.

1.5. Teaching methods	,	 lectures seminars and worksho exercises long distance education fieldwork 	pps on	individua multime laborato mentors other	al assignment edia and network pries ship	
1.6. Commen	ts					
1.7. Student's	s obligat	tions				
Course attendance, activity, student project, studying.						
1.8. Evaluatio	on of stu	ident's work				
Course	2	Activity/Participation	Seminar	. paper	Experimental	

attendance						wo	rk	
Written exam	1	Oral exam		Essay		Res	earch	
Project	1	Sustained knowledge check	1	Report		Pra	ctice	
Portfolio								
1.9. Procedur	re and e	xamples of learning outcor	ne asse	essment ir	class and c	at the find	al exam	
Course attend exam or their	dance, a combir	activity, sustained knowled nation.	ge che	ck (two m	id-term exa	ıms), proj	ect, written a	nd oral
1.10. A	ssigned	reading (at the time of the	e subm	nission of s	tudy progra	amme pro	posal)	
Teaching material Lamb, T., et al., Sh London, 1995. W	l of class nip Desi inston,	s: "Methodology of Ship Pr gn & Construction, Vol. I, II W.L., Operations research-	oducti , SNAN Applic	on" /IE, 2003. ation & Al	gorithms. D	uxbury P	ress, Belmont,	2003
1.11. O	ptional	/ additional reading (at the	e time	of proposi	ng study pr	ogramme	?)	
 Storch, R. L. at al: Ship Production, 2nd edition, SNAME, 2007. Pierre de Lit, A. Delchambre, Integrated design of a Product Family and its Assembly System, Springer, 2003. Design for production Manual, Nation Shipbuilding Research, 1999. Fei Tao, Meng Zhang et al, Digital Twin Driven Smart Manufacturing, 2019 Steffen Bangsow, Technomatix Plant Simulation, Modelling & Programming by Means of Examples, Springer, 2015. 								
1.12. N	umher	of assianed reading coni	ies wit	th reaard	to the n	umher o	f students cu	rrentlv
attendin	g the co	oy assigned reading copi purse		in regard				
Title Number of copies Students								
Teaching material of class: "Methodology of Ship Production",pdf								
Lamb, T., et al., Ship Design & Construction, Vol. I, II, SNAME, 2 15 2003.								
London, 1995. Winston, W.L., Operations research - Application and Algorithms. Duxbury Press, Belmont, 2003								

1.13. Quality monitoring methods which ensure acquirement of output knowledge, skills and competences

Basic description					
Course title	Numerical Methods and Optimization				
Study programme	Graduate University Study of Naval Architecture				
Course status	compulsory				
Year	1.				
ECTS credits and	ECTS student 's workload coefficient 4				
teaching	Number of hours (L+E+S) 30+30+0				

1.1. Course objectives

Recognize computational problems in engineering. Understand and apply basic numerical methods. Understand fundamental ideas and possibilities of application of chosen optimization methods. Independently write short program code and use existing software for numerical problem solving.

1.2. Course enrolment requirements

None.

1.3. Expected course learning outcomes

Recognize appropriate computational methods for given simpler mathematical formulations of engineering problems. Correctly explain fundamental ideas, advantages and disadvantages of particular numerical methods and optimization methods. Correctly explain fundamental ideas as well as advantages and disadvantages of particular numerical methods. Compare methods applicable to the same type of problem. Write simple computer programs for particular computational methods by following instructions. Correctly explain ideas and properties of some optimization methods. Evaluate results of numerical methods and optimization methods.

1.4. Course content

Numerical methods and computer programs for: nonlinear equations with one unknown; systems of nonlinear equations; curve fitting (regression, interpolation); ordinary differential equations. Methods and computer programs for: optimizing a function of one variable, optimizing a function of multiple variables, linear programming. Operational research methods. Appropriate computer programs.

	🛛 lectures	individual assignment
1.5. Teaching	seminars and workshops	multimedia and network
	🔀 exercises	🔀 laboratories
methous	Iong distance education	mentorship mentorship
	🗌 fieldwork	other
1.6. Comments	-	
1.7. Student's oblig	ations	

Course attendance, mid-term exams, computer knowledge checks.

1.8. Evaluation of student's work

Course attendance	2	Activity/Participation		Seminar paper	Experimental work	
Written exam		Oral exam	0.5	Essay	Research	

Project		Sustained knowledge check	1.5	Report			Practice			
Portfolio										
1.9. Procedur	re and e.	xamples of learning outcor	ne asse	essment i	n class and	d at the	e final exam			
Course attend	dance, n	nid-term exams, computer	knowl	edge che	cks, oral e	xam.				
1.10. A	ssigned	reading (at the time of the	e subm	ission of	study prog	Iramme	e proposal)			
Chapra, S. C., Channale, R. P., Numerical methods for engineers, McGrowHill Inc., 1988 Press, W., et al: Numerical Recipes for C/C++/Pascal/Fortran, Cambridge University Press, 1992 Winston, L.W., Operations Research – Applications and Algorithms, Duxbury Press, Belmont, 1994										
1.11. Optional / additional reading (at the time of proposing study programme)										
-										
1.12. N attendin	umber g the co	of assigned reading copi urse	es wit	th regard	to the	numbe	er of students cu	urrently		
		Title			Number	of copi	es Number studen	r of ts		
Chapra, S. C., Cha McGrowHill Inc., 1	nnale, F 1988	R. P., Numerical methods fo	or engi	neers,		6	17			
Press, W., et al: N Cambridge Unive	umerica rsity Pre	al Recipes for C/C++/Pascal ess, 1992	/fortra	ın,		6	17			
Winston, L.W., Op Algorithms, Duxb	peration ury Pres	s Research – Applications a s, Belmont, 1994	and			3	17			
1.13. Quality monitoring methods which ensure acquirement of output knowledge, skills and competences										
Through the Institution's quality assurance system.										

Basic description									
Course title	Offshore Operations								
Study programme	Graduate University Study of Naval Architecture								
Course status	optional								
Year	2.								
ECTS credits and	ECTS student 's workload coefficient	5							
teaching	Number of hours (L+E+S)	30+30+0							

1.1. Course objectives

Creating preconditions for complex analysis of the scope and specificities of marine operations in offshore industry. Acquiring specific competencies in complex offshore operations. Ability to carry out appropriate analysis and assessment of corresponding requirements during planning and performing offshore operations. Acquiring specific knowledge in risk analysis of marine and offshore operations.

1.2. Course enrolment requirements

Attended course Offshore Structures and Vessels.

1.3. Expected course learning outcomes

To define and distinguish marine operations in offshore industry. To describe how weather windows can be determined according to weather forecasts and environmental loads. To have knowledge and competences about selected marine operations. To describe and analyze marine and offshore operations like station keeping, path following, heavy object lifting, pipe playing, tandem loading and off-loading, heave compensation. To be able to quantitatively and qualitatively analyze risks during marine and offshore operations.

1.4. Course content

Introduction in marine and offshore operations. Weather windows and uncertainties in weather forecasts. Marine and offshore operations: installation and operation of offshore oil and gas fields, towing and transportation of offshore structures, lifting and landing of large and heavy objects, mooring, pipe and cable laying, offshore loading and off-loading, heave compensation, subsea operations, remotely operated and autonomous operations. Analysis and assessment of requirements during planning and performing of offshore operations. Operational profiles. Risk analysis in marine and offshore operations. Qualitative and quantitative risk analysis. Safety of operations. Cost benefit analysis.

1.5. Teaching methods		 lectures seminars and worksho exercises long distance education fieldwork 	ops on	 individual assignment multimedia and network laboratories mentorship other 						
1.6. Commen	ents									
1.7. Student's	s obliga	tions								
Attendance, parti	cipation	n, seminar paper, self-study								
1.8. Evaluatio	on of stu	ident's work								
Course attendance	2	Activity/Participation Seminar paper 1 Experimental work								

Written exam	Oral exam	1	Essay	Research	
Project	Sustained knowledge check	1	Report	Practice	
Portfolio					

1.9. Procedure and examples of learning outcome assessment in class and at the final exam

Attendance, activity, individual assignments, continuous assessment (2 mid-term exams), oral examination.

1.10. Assigned reading (at the time of the submission of study programme proposal)

Nielsen, F.G. (2007). Marine Operations. Lecture Notes, Department of Marine Technology, Faculty of Engineering, Norwegian University of Science and Technology, Trondheim/Bergen, Norway.

Gudmestad, O.T. (2015). Marine Technology and Operations: Theory & Practice. WIT Press, UK.

DNV GL (2017). Environmental conditions and environmental loads. Report DNVGL-RP-C205, DNV GL AS, Norway. [Online]. Available: https://www.dnvgl.com/rules-standards/

DNV GL (2017). Modelling and analysis of marine operations. Report DNVGL-RP-N103, DNV GL AS, Norway. [Online]. Available: https://www.dnvgl.com/rules-standards/

DNV GL (2017). Risk management in marine and subsea operations. Report DNVGL-RP-N101, DNV GL AS, Norway. [Online]. Available: https://www.dnvgl.com/rules-standards/

1.11. Optional / additional reading (at the time of proposing study programme)

Carlton, J., Jukes, P., Choo, Y.-S., Eds. (2018). Encyclopedia of Maritime and Offshore Engineering. John Wiley & Sons, Inc., Hoboken, USA.

Dhanak, M.R., Xiros, N.I., Eds. (2016). Springer Handbook of Ocean Engineering. Springer, Germany.

Chakrabarti, S.K. (2005). Handbook of Offshore Engineering, Vol. 2. Elsevier, Oxford, UK.

Fossen, T.I. (2011). Handbook of Marine Craft Hydrodynamics and Motion Control. John Wiley & Sons, Ltd., UK.

Vinnem, J.-E. (2014). Offshore Risk Assessment - Principles, Modelling and Applications of QRA Studies - Vol. 1 & 2, 3rd Ed. Springer-Verlag, London, UK.

1.12.	Number	of	assigned	reading	copies	with	regard	to	the	number	of	students	currently
attena	ling the co	urs	e										

Title	Number of copies	Number of students
Nielsen, F.G. (2007). Marine Operations. Lecture Notes,		
Department of Marine Technology, Faculty of Engineering,	1	20
Norwegian University of Science and Technology,	T	20
Trondheim/Bergen, Norway.		
Gudmestad, O.T. (2015). Marine Technology and Operations:	1	20
Theory & Practice. WIT Press, UK.	T	20
DNV GL (2017). Environmental conditions and environmental		
loads. Report DNVGL-RP-C205, DNV GL AS, Norway. [Online].	available online	20
Available: https://www.dnvgl.com/rules-standards/		
DNV GL (2017). Modelling and analysis of marine operations.		
Report DNVGL-RP-N103, DNV GL AS, Norway. [Online]. Available:	available online	20
https://www.dnvgl.com/rules-standards/		
DNV GL (2017). Risk management in marine and subsea		
operations. Report DNVGL-RP-N101, DNV GL AS, Norway.	available online	20
[Online]. Available: https://www.dnvgl.com/rules-standards/		
1.13. Quality monitoring methods which ensure acau	irement of output ki	nowledge, skills and

1.13. Quality monitoring methods which ensure acquirement of output knowledge, skills and competences

Through a structured system of quality assurance of the Faculty.

Basic description									
Course title	Offshore Structures and Vessels								
Study programme	Graduate University Study of Naval Architecture								
Course status	optional								
Year	1.								
ECTS credits and	ECTS student 's workload coefficient	5							
teaching	Number of hours (L+E+S)	30+30+0							

1.1. Course objectives

Creating preconditions for complex analysis of the scope and specifics of maritime technology. Based on the basic knowledge of the technical requirements, and how to achieve compliance with the broader basis for understanding the essential factors in the design, construction and operation in the maritime technology.

1.2. Course enrolment requirements

None.

1.3. Expected course learning outcomes

To distinguish offshore structures and vessels and to describe their characteristics. To estimate environmental and other loads and their impact on offshore structures and vessels. To perform static analysis of mooring lines. To describe construction and installation requirements for selected offshore structures and vehicles. To describe and perform capability analysis of dynamic positioning system. To distinguish special purpose vessels and to describe their characteristics. To distinguish other floating units and subsea structures and objects and to describe their characteristics. To analyse and elaborate environmental and ecological impact of offshore structures and vessels.

1.4. Course content

Classification of offshore structures and vessels. Fixed platforms. Compliant platforms. Jacket platforms. Jack-up platforms. Tension-leg platforms. Mooring systems. Static analysis of mooring lines. Semisubmersible rigs and ships. Dynamic positioning systems. Environmental loads. Other loads. Construction and installation requirements. Special purpose vessels: tugs, offshore supply vessels, cable-laying vessels, pipe-laying vessels, dredgers, drilling ships, heavy cargo vessels. Floating, production, storage and offloading units. Offshore wind farms and other offshore renewable energy systems. Offshore aquaculture structures. Offshore mobile bases. Subsea systems, structures and objects. Environmental and ecological aspects of offshore structures and vessels.

1.5. Teaching methods		 lectures seminars and worksho exercises long distance educatio fieldwork 	ps n	 individual assignment multimedia and network laboratories mentorship other 						
1.6. Commen	ts									
1.7. Student's	obliga	tions								
Attendance, partio	cipatior	n, seminar paper, self-study.								
1.8. Evaluation of student's work										
Course	2	Activity/Participation	Semina	ar paper	1	Experimental				

attendance				work	
Written exam	Oral exam	1	Essay	Research	
Project	Sustained knowledge check	1	Report	Practice	
Portfolio					

1.9. Procedure and examples of learning outcome assessment in class and at the final exam

Attendance, activity, individual assignments, continuous assessment (2 mid-term exams), oral examination.

1.10. Assigned reading (at the time of the submission of study programme proposal)

Reddy, D.V., Swamidas, A.S.J. (2014). Essentials of Offshore Structures - Framed and Gravity Platforms. CRC Press, Taylor & Francis Group, LLC, Boca Raton, FL, USA.

Wilson, J.F., Ed. (2003). Dynamics of Offshore Structures. John Wiley & Sons, Inc., Hoboken, New Jersey, USA. Chakrabarti, S.K. (2005). Handbook of Offshore Engineering, Vol. 1 & 2. Elsevier, Oxford, UK.

DNV GL (2017). DNV GL rules for classification: Ships (RU-SHIP), Underwater technology (RU-UWT), Offshore units (RU-OU), Offshore standards (OS). [Online]. Available: https://www.dnvgl.com/rules-standards/

1.11. Optional / additional reading (at the time of proposing study programme)

El-Reedy, M.A. (2012). Offshore Structures - Design, Construction and Maintenance. Elsevier, USA.

McCormick, M.E. (2010). Ocean Engineering Mechanics with Applications. Cambridge University Press, New York, USA.

Faltinsen, O.M. (1990). Sea Loads on Ships and Offshore Structures. Cambridge University Press, Cambridge, UK.

Karimirad, M. (2014). Offshore Energy Structures - For Wind Power, Wave Energy and Hybrid Marine Platforms. Springer International Publishing, Switzerland.

Carlton, J., Jukes, P., Choo, Y.-S., Eds. (2018). Encyclopedia of Maritime and Offshore Engineering. John Wiley & Sons, Inc., Hoboken, USA.

1.12.	Number	of	assigned	reading	copies	with	regard	to	the	number	of	students	currently
attena	ling the co	ours	se										

-		
Title	Number of copies	Number of students
Reddy, D.V., Swamidas, A.S.J. (2014). Essentials of Offshore Structures - Framed and Gravity Platforms. CRC Press, Taylor & Francis Group, LLC, Boca Raton, FL, USA.	1	20
Wilson, J.F., Ed. (2003). Dynamics of Offshore Structures. John Wiley & Sons, Inc., Hoboken, New Jersey, USA.	1	20
Chakrabarti, S.K. (2005). Handbook of Offshore Engineering, Vol. 1 & 2. Elsevier, Oxford, UK.	1	20
DNV GL (2017). DNV GL rules for classification: Ships (RU-SHIP), Underwater technology (RU-UWT), Offshore units (RU-OU), Offshore standards (OS). [Online]. Available: https://www.dpvgl.com/rules-standards/	Available online	20

1.13. Quality monitoring methods which ensure acquirement of output knowledge, skills and competences

Through a structured system of quality assurance of the Faculty.

Basic description				
Course title	Professional Practice II			
Study programme	Graduate University Study of Naval Architecture			
Course status	compulsory			
Year	1.			
ECTS credits and	ECTS student 's workload coefficient	5		
teaching	Number of hours (L+E+S)	-		

1.1. Course objectives

Student verifies and complements his own expertise, along with a comprehensive view of the work process.

1.2. Course enrolment requirements

None.

1.3. Expected course learning outcomes

Apply acquired knowledge and skills from studied courses professional content. Gain working process experience. Develop and further improve competence for solving specific professional engineering problems.

1.4. Course content

Industrial practice within Graduate University Study of Naval Architecture is carried out individually in work organization that is engaged in the student's field of study, and with activities in accordance with the Industrial Practice Rules and Study Program curriculum. Within such practice, student is familiarized with the corresponding jobs that are studied through programs of education, with the task of verifying and complementing their own expertise, along with a comprehensive view of the work process.

1.5. Teaching methods	 lectures seminars and workshops exercises long distance education fieldwork 	 individual assignment multimedia and network laboratories mentorship other

1.6. Comments

1.7. Student's obligations

Conducting professional practice in duration of 15 working days, or 120 hours, and writing the corresponding report.

1.8. Evaluation of student's work

Course attendance	Activity/Participation	Seminar paper		Experimental work		
Written exam	Oral exam	Essay		Research		
Project	Sustained knowledge check	Report	1	Practice	4	
Portfolio						
1.9. Procedure and examples of learning outcome assessment in class and at the final exam						

Assesses and evaluates student work and dedication, and written report.

1.10.	Assigned reading (at the time of the submission of study programme proposal)				
1.11.	Optional / additional reading (at the time of propo	sing study programme)		
1.12. atten	Number of assigned reading copies with regard ding the course	d to the number o	f students currently		
	Title	Number of copies	Number of students		
1.13. сотр	Quality monitoring methods which ensure acqu petences	iirement of output ki	nowledge, skills and		
Through the Institution's quality assurance system.					

Basic description				
Course title	Project I			
Study programme	Graduate University Study of Naval Architecture			
Course status	optional			
Year	1.			
ECTS credits and	ECTS student 's workload coefficient	5		
teaching	Number of hours (L+E+S)	0+30+0		

1.1. Course objectives

Application of acquired knowledge and skills to solve practical problems in the field of associated course from which the Project I is elected.

1.2. Course enrolment requirements

Enrolled course from which the Project I is elected.

1.3. Expected course learning outcomes

Apply the knowledge and skills from professional content of the associated course. Solve practical task. Acquire competence for individually solving specific professional tasks.

1.4. Course content

Chosen chapter of associated course from which the project was elected.

lectures	🔀 individual assignment
seminars and workshops	multimedia and network
exercises	laboratories
long distance education	🔀 mentorship
🗌 fieldwork	other
	 lectures seminars and workshops exercises long distance education fieldwork

1.6. Comments

1.7. Student's obligations

Attending the consultation, individually solving task and writing the project report.

1.8. Evaluation of student's work							
Course attendance		Activity/Participation		Seminar paper		Experimental work	
Written exam		Oral exam		Essay		Research	
Project	2	Sustained knowledge check		Report		Practice	
Portfolio		Individual task solving	3				

1.9. Procedure and examples of learning outcome assessment in class and at the final exam

Assesses and evaluates the accuracy and completeness of the project task solution and its presentation.

1.10. Assigned reading (at the time of the submission of study programme proposal)

References listed for the associated course from which the Project I is elected.

1.11. Optional / additional reading (at the time of proposing study programme)

 References listed for the associated course from which the Project I is elected.

 1.12. Number of assigned reading copies with regard to the number of students currently attending the course

 Number of copies

 Title
 Number of copies

 Students
 Students

 Image: Student of the studen

Basic description				
Course title	Project II			
Study programme	Graduate University Study of Naval Architecture			
Course status	optional			
Year	2.			
ECTS credits and	ECTS student 's workload coefficient	5		
teaching	Number of hours (L+E+S)	0+30+0		

1.1. Course objectives

Application of acquired knowledge and skills to solve practical problems in the field of associated course from which the Project II is elected.

1.2. Course enrolment requirements

Enrolled course from which the Project II is elected.

1.3. Expected course learning outcomes

Apply the knowledge and skills from professional content of the associated course. Solve practical task. Acquire competence for individually solving specific professional tasks.

1.4. Course content

Chosen chapter of associated course from which the project was elected.

	lectures	individual assignment
1.5. Teaching methods	exercises	laboratories
	Iong distance education fieldwork	⊠ mentorship □other
		•

1.6. Comments

1.7. Student's obligations

Attending the consultation, individually solving task and writing the project report.

1.8. Evaluation of student's work							
Course attendance		Activity/Participation		Seminar paper		Experimental work	
Written exam		Oral exam		Essay		Research	
Project	2	Sustained knowledge check		Report		Practice	
Portfolio		Individual task solving	3				

1.9. Procedure and examples of learning outcome assessment in class and at the final exam

Assesses and evaluates the accuracy and completeness of the project task solution and its presentation.

1.10. Assigned reading (at the time of the submission of study programme proposal)

References listed for the associated course from which the Project II is elected.

1.11. Optional / additional reading (at the time of proposing study programme)

 References listed for the associated course from which the Project II is elected.

 1.12.
 Number of assigned reading copies with regard to the number of students currently attending the course

 Image: Title
 Number of copies

 Title
 Number of copies

 Image: Title
 Image: Title

 Image: Title
 Image: Title

Basic description				
Course title	Project Management in Shipbuilding			
Study programme	Graduate University Study of Naval Architecture			
Course status	optional			
Year	2.			
ECTS credits and	ECTS student 's workload coefficient	5		
teaching	Number of hours (L+E+S)	30+30+0		

1.1. Course objectives

Introduction to the project management of the construction of the vessel or facility of marine technology, and introduction to project management methods applied in the shipyard in accordance with defined learning outcomes.

1.2. Course enrolment requirements

None.

1.3. Expected course learning outcomes

Interpret and explain the processes of project management. Analyze the conditions for the start of the project. Interpret the simultaneous engineering. Analyze the project management implementation. Explain risk management. Distinguish the specifics of project management in the shipbuilding industry. Describe the trends in development of project management in the shipbuilding industry.

1.4. Course content

Introduction and basic concepts. Project management processes. Making the project. Simultaneous engineering. Time management for project implementation, cost, procurement, quality and communications project. Risk Management. The specifics of the vessel and objects of marine technology new building project management. Development trends in project management that are of great importance for the economy.

	K fieldwork	
methods	🛛 long distance education	🕅 mentorship
1.J. Teuching	🔀 exercises	laboratories
1 E Togohing	seminars and workshops	multimedia and network
	🔀 lectures	🔀 individual assignment

- 1.6. Comments
- 1.7. Student's obligations

Course attendance, activity, homework, studying.

1.8. Evaluation of student's work

Course attendance	2	Activity/Participation		Seminar paper	1	Experimental work	
Written exam	1	Oral exam		Essay		Research	
Project		Sustained knowledge check	1	Report		Practice	
Portfolio							

1.9. Procedure and examples of learning outcome assessment in class and at the final exam

Course attendance, activity, continuous knowledge testing (two mid-term exams), Seminar paper, written exam, oral exam.

1.10. Assigned reading (at the time of the submission of study programme proposal)

Matulja, T.: Teaching material published on e-learning course Project Management in Shipbuilding, 2021. ..., Project Management Institute, A Guide to the Project Management Body of Knowledge, PMI., USA, 2013. Ostwald, F. P., McLaren, S. T., Cost Analysis and Estimating for Engineers and Management, Prentice Hall, 2003.

Merow, E.W., Industrial Megaprojects, 1st edition, Wiley, 2011.

1.11. Optional / additional reading (at the time of proposing study programme)

lyigun, M. Guven, A Decision Support System for R&D Project Selection and Resource Allocation under Uncertainty, Project Management Journal, December 1993.

Rodney Turner, J., The Handbook of Project Based Management, McGraw-Hill, New York, 1992. ..., ISO: Code of Good Practice for Standardization, Geneva, Switzerland: ISO Press, 1994.

1.12. Number of assigned reading copies with regard to the number of students currently attending the course

Title	Number of copies	Number of students
Matulja, T.: Teaching material published on e-learning course		9
Project Management in Shipbuilding, 2021.		
, Project Management Institute, A Guide to the Project	1	9
Management Body of Knowledge, Project Management Ins., USA,		
2013.		
Ostwald, F. P., McLaren, S. T., Cost Analysis and Estimating for	1	9
Engineers and Management, Prentice Hall, 2003.		
Merow, E.W., Industrial Megaprojects, 1st edition, Wiley, 2011.	1	9

1.13. Quality monitoring methods which ensure acquirement of output knowledge, skills and competences

Basic description					
Course title	Quality Management and Metrology				
Study programme	Graduate University Study of Naval Architecture				
Course status	optional				
Year	2.				
ECTS credits and	ECTS student 's workload coefficient 5				
teaching	Number of hours (L+E+S) 30+30+0				

1.1. Course objectives

The course is designed to provide the student with basic knowledge in quality management and metrology topics. Through individual projects, students are introduced with practical application of several course objectives.

1.2. Course enrolment requirements

None.

1.3. Expected course learning outcomes

Compare different approaches to quality management. Specify implementation of quality management system and international quality standards ISO 90001. Compare models of excellence. Differentiate methods for quality improvement. Assess capability of measurement system. Interpret advanced metrology concepts. Assess quality by statistical process control. Asses risk.

1.4. Course content

History and characteristics of quality management.

Strategies of quality management. Total quality management. Quality planning methods. Quality management system. Methods for quality improvement. Basic and advanced continuous quality improvement tools..

Statistical process control. Control charts. Process capability analysis. Measurement system capability analysis. Reliability and risk management. Quality management in projects.

Process improvement with designed experiments. Full factorial experiments. Fractional factorial experiments.

	🔀 lectures	🔀 individual assignment
1 E Toaching	seminars and workshops	multimedia and network
1.5. Teaching	🔀 exercises	☐ laboratories
methous	Iong distance education	mentorship
	🔀 fieldwork	other
1.6. Comments		

1.7. Student's obligations

Course attendance, active participation in the course, attendance at exercises and fieldwork, seminar paper and independent learning.

1.8. Evaluation of student's work

Course attendance	2	Activity/Participation	Seminar paper	0.75	Experimental work	
4000.044.000						

Written exam	0.5	Oral exam		Essay		Research	
Project		Sustained knowledge check	1.5	Report		Practice	
Portfolio		Fieldwork	0.25				
1.9. Procedure and examples of learning outcome assessment in class and at the final exam							

Sustained knowledge check and final written exam.

1.10. Assigned reading (at the time of the submission of study programme proposal)

1.11. Optional / additional reading (at the time of proposing study programme)

Montgomery, D. C.: Introduction to statistical quality control, 8th ed., J. Wiley & Sons, New York, 2019. Montgomery, D.C., Jennings, C. L., Pfund, M. E.: Managing, controlling, and improving quality, John Wiley & Sons Wiley, 2011.

Bilić, B.: Kvaliteta-planiranje, analiza i upravljanje, FESB, 2016.

Kondić, Ž., Maglić, L., Pavletić, D.: Kvaliteta 1, 2, 3, Sveučilište Sjever, Strojarski fakultet Slavonski Brod, Tehnički fakultet Sveučilišta u Rijeci, 2018

Jay L. Bucher: The Metrology Handbook, ASQ Quality Press, 2004.

Smith, G. T.: Industrial Metrology, Springer, 2002.

1.12. Number of assigned reading copies with regard to the number of students currently attending the course

Title	Number of copies	Number of students
1.13. Quality monitoring methods which ensure	acquirement of output ki	nowledge, skills and
competences		

Basic description					
Course title	Seakeeping				
Study programme	Graduate University Study of Naval Architecture				
Course status	optional				
Year	2.				
ECTS credits and	ECTS student 's workload coefficient 5				
teaching	Number of hours (L+E+S) 45+30+0				

1.1. Course objectives

Understanding stochastic models of ship motions on sea waves. The ability to analyze and compare alternative design solutions based on the vessel's operational efficiency. Developing the ability to work in small groups (teamwork) and present the obtained results.

1.2. Course enrolment requirements

None.

1.3. Expected course learning outcomes

Explain the mechanism of regular progressive wave. Statistically analyze the sea waves data for different geographical areas. Describe the methods of long-term prediction of extreme values. Explain strip theory of ship motion.

Itemize the dynamic effect of ship motion and describe the methods of calculation. Calculate the response spectrum of the ship and exceedance of the dynamic effect criteria on certain weather conditions. State and explain the impact of certain design and operating parameters on the dynamic response of the ship on sea waves. Analyze and compare alternative ship design solutions based on operational efficiency.

1.4. Course content

Linear wave theory. Sea waves as stochastic process. Sea waves statistics. Design sea state. Ship behaviour on regular wave. Strip theory. Response amplitude operators. Ship response on sea waves. Dynamic effects on sea waves. Polar plots. Seakeeping criteria. Operability. Motion stabilization. Seakeeping in design.

1.5. Teaching	🔀 lectures	🔀 individual assignment
	seminars and workshops	multimedia and network
	🔀 exercises	🔀 laboratories
methous	Iong distance education	mentorship mentorship
	🗌 fieldwork	other
1.6. Comments	-	

1.7. Student's obligations

Course attendance, activity, studying.

1.8. Evaluation of student's work							
Course attendance	2.5	Activity/Participation		Seminar paper	0.5	Experimental work	
Written exam	1	Oral exam		Essay		Research	
Project		Sustained knowledge check	1	Report		Practice	

Portfolio	Homework										
1.9. Procedur	e and e.	xamples o	of learni	ing outco	me asses	ssme	nt in class a	nd at the	e final	exam	
Course atten	dance,	seminar	paper,	activity,	continu	ous	knowledge	testing	(two	mid-term	exams),

written and oral exam.

1.10. Assigned reading (at the time of the submission of study programme proposal)

Prpić-Oršić J., Čorić V.: Seakeeping, Zigo, University of Rijeka, 2006. (in Croatian)

1.11. Optional / additional reading (at the time of proposing study programme)

Lloyd A.R.M.J.: Seakeeping: Ship behaviour in Rough water, Pllis Horwood Ltd, New York, 1989. Faltinsen, O. M.: Sea Loads on Ships and Offshore Structures, University Press, Cambridge, 1998.

											Numak	or of
atten	ding the course	е										
1.12.	Number of	assigned	reading	copies	with	regard	to	the	number	of	students	currently

Title	Number of copies	Number of students
Prpić-Oršić J., Čorić V.: Seakeeping, Zigo, University of Rijeka, 2006. (in Croatian)	5	5

1.13. Quality monitoring methods which ensure acquirement of output knowledge, skills and competences

Basic description						
Course title	Ship Design I					
Study programme	Graduate University Study of Naval Architecture					
Course status	compulsory					
Year	2.					
ECTS credits and	ECTS student 's workload coefficient 5					
teaching	Number of hours (L+E+S)	Number of hours (L+E+S) 45+15+0				

1.1. Course objectives

Acquiring specific competencies in ship design. Developing the ability for solving problems set in order to define design requirements and to create a preliminary design of a ship.

1.2. Course enrolment requirements

None.

1.3. Expected course learning outcomes

Describe the process of the ship design and analyze the phases of ship design. Define and describe the concept of design requirements and concept and preliminary design. Specify and analyze methods of preparing a preliminary design and selection of main ship dimensions. Define the hull shape and check the ship floatability and stability in the intact and damaged condition. Analyze the rationality of subdivision and the layout of ship spaces and tanks. Accomplish a preliminary propulsion calculation and prediction diagram. Define masses and centers of gravity in various iterative design stages. Create a general arrangement plan, technical specification and get acquainted with the classification documentation. Analyze and explain the application of computers for basic calculations in the design of the vessels. Acquaint with the delivery documentation and delivery testing program. Analyze the use of computers for basic calculations in ship design.

1.4. Course content

Introduction to the ship design. Phases of the ship design. Design requirements. Concept design. Preliminary design. Methods of preparing a preliminary project. Selection of the ship main dimensions. Defining the ship's hull form and creating the ship lines plan. Checking the floatability and stability in the intact and damaged condition. Determination of the required power and choice of main propulsion machinery. Creating a general arrangement plan. Ship subdivision. Layout of ship spaces and tanks. Preliminary determination of masses and centers of gravities. Contract design. Technical specification. Classification documentation. International regulations, standards and conventions and rules of classification societies related to the ship design. Delivery documentation and delivery testing program. Using of computers for basic calculations in ship design.

1.5. Teaching methods	 lectures seminars and workshops exercises long distance education fieldwork 	 individual assignment multimedia and network laboratories mentorship other 			
1.6. Comments					
1.7. Student's obligations					

Class attendance, class activity, project assignment, individual learning.

1.8.	Evaluation	of student's	work
------	------------	--------------	------

	- ,					
Course attendance	2	Activity/Participation	0.5	Seminar paper	Experimental work	
Written exam	0.5	Oral exam	0.5	Essay	Research	
Project	1	Sustained knowledge check	0.5	Report	Practice	
Portfolio						

1.9. Procedure and examples of learning outcome assessment in class and at the final exam

Class attendance, class activity, project assignment, continuous assessment (mid-term exams), written and oral exam

1.10. Assigned reading (at the time of the submission of study programme proposal)

Papanikolau, A.: Ship Design - Methodologies of Preliminary Design, Springer, London, 2014. Roh, M.I., Lee, K.-Y.: Computational Ship Design, Springer Nature Singapore Pte Ltd, Singapore, 2018. Watson, D.: Practical Ship Design, Elsevier Science Ltd., Oxford, 1998.

Schneekluth, H., Bertram, V.: Ship Design for Efficiency & Economy, Butte rworth Heinemann, Oxford, 1998.

1.11. Optional / additional reading (at the time of proposing study programme)

Belamarić, I.: Brod i entropija, Književni krug, Split, 1998.

..., Rules for the Classification of Ships, Croatian Register of Shipping, , Split, 2018.

..., Instructions for using shipbuilding software packages for ship basic design calculations

1.12. Number of assigned reading copies with regard to the number of students currently attending the course

···· · · · · · · · · · · · · · · · · ·		
Title	Number of copies	Number of students
Papanikolau, A.: Ship Design - Methodologies of Preliminary Design, Springer, London, 2014.	1	10
Roh, M.I., Lee, KY.: Computational Ship Design, Springer Nature Singapore Pte Ltd, Singapore, 2018.	1	10
Watson, D.: Practical Ship Design, Elsevier Science Ltd., Oxford, 1998.	1	10
Schneekluth, H., Bertram, V.: Ship Design for Efficiency & Economy, Butterworth Heinemann, Oxford, 1998.	1	10

1.13. Quality monitoring methods which ensure acquirement of output knowledge, skills and competences

Through a structured system of quality assurance of the Faculty.

Basic description					
Course title	Ship Design II				
Study programme	Graduate University Study of Naval Architecture				
Course status	optional				
Year	2.				
ECTS credits and	ECTS student 's workload coefficient 5				
teaching	Number of hours (L+E+S)	Number of hours (L+E+S) 15+45+0			

1.1. Course objectives

Acquiring specific competencies in ship design. Developing the ability for solving problems set in order to define design requirements and to create an own preliminary design of a ship.

1.2. Course enrolment requirements

Attended course Ship Design I.

1.3. Expected course learning outcomes

Distinguish and argue the basic theoretical and empirical formula in ship design. Specify and analyze technical specification for particular concept designs. Make a ship concept design with associated calculations and draw a general arrangement plan and create a technical specification.

1.4. Course content

Presentation of the basic theoretical and empirical formulas useful in ship design. Getting acquainted with the technical requirements for particular concept designs. Ship design methodology. Risk-based ship design. Individual creation a ship concept design by phases. Creating an associated calculations, general arrangement plan and technical specification.

	🔀 lectures	🔀 individual assignment
1 5 Togobing	seminars and workshops	multimedia and network
1.5. Teuching	🔀 exercises	laboratories
methous	Iong distance education	mentorship mentorship
	🗌 fieldwork	other

1.6. Comments

1.7. Student's obligations

Class attendance, class activity, project assignment, individual learning.

1.8. Evaluation of student's work

Course attendance	2	Activity/Participation	0.5	Seminar paper	Experimental work	
Written exam	0.5	Oral exam		Essay	Research	
Project	2	Sustained knowledge check		Report	Practice	
Portfolio						

1.9. Procedure and examples of learning outcome assessment in class and at the final exam

Class attendance, class activity, project assignment, continuous assessment (mid-term exams), written and oral exam

1.10. Assigned reading (at the time of the submission of study programme proposal)

Papanikolau, A.: Ship Design - Methodologies of Preliminary Design, Springer, London, 2014.

Watson, D.: Practical Ship Design, Elsevier Science Ltd., Oxford, 1998.

Papanikolau, A. (ed.): Risk-Based Ship Design - Methods, Tools and Applications, Springer, London, 2009. Papanikolau, A. (ed.): A Holistoic Approach to Ship Design, Volume 1: Optimisation of Ship Design and Operation for Life Cycle, Springer Nature Switzerland AG, Cham, 2019

1.11. Optional / additional reading (at the time of proposing study programme)

Belamarić, I.: Brod i entropija, Književni krug, Split, 1998.

..., Rules for the Classification of Ships, Croatian Register of Shipping, , Split, 2018.

..., Instructions for using shipbuilding software packages for ship basic design calculations

1.12. Number of assigned reading copies with regard to the number of students currently attending the course

Title	Number of copies	Number of students
Papanikolau, A.: Ship Design - Methodologies of Preliminary Design, Springer, London, 2014.	1	10
Watson, D.: Practical Ship Design, Elsevier Science Ltd., Oxford, 1998.	1	10
Papanikolau, A. (ed.): Risk-Based Ship Design - Methods, Tools and Applications, Springer, London, 2009.	1	10
Papanikolau, A. (ed.): A Holistic Approach to Ship Design, Volume 1: Optimisation of Ship Design and Operation for Life Cycle, Springer Nature Switzerland AG, Cham, 2019	1	10
1 12 Ouglity manitaring mathada which ansura asay	iromont of output k	anuladan akilla and

1.13. Quality monitoring methods which ensure acquirement of output knowledge, skills and competences

Through a structured system of quality assurance of the Faculty.

Basic description					
Course title	Ship Negotiation Process				
Study programme	Graduate University Study of Naval Architecture				
Course status	optional				
Year	2.				
ECTS credits and	ECTS student 's workload coefficient 5				
teaching	Number of hours (L+E+S)	30+15+0			

1.1. Course objectives

Introducing students to the ship negotiation process according to defined learning outcomes.

1.2. Course enrolment requirements

None.

1.3. Expected course learning outcomes

Analyze the sales function within the business and production systems. Analyze and compare the business strategies, shipbuilding strategy, and the content of marine vessel negotiations. Display and interpret the actions of receiving and processing the inquiry. To analyze the inquiry from the financial and marketing standpoint. Distinguish and interpret the types and structure of calculations, the costs and the selling price. Analyze methods for ship building costs estimations. Define elements and content of the bid, compare and argue the options. Differentiate terminology, elements and types of business contracts. Describe the procedures to avoid risk.

1.4. Course content

Sales function in shipyard management-production system. Business and build strategy. Contents of contracting. Reception and processing of inquiry. Evaluation of inquiry regarding financial and marketing standpoint. Types of calculations. Structure of calculations. Costs estimation. Costing price and sale price. Elements and contents of bid, options. Business negotiations, business correspondence. Elements and contract standard types. Documentation. Avoiding risk. Optimal and satisfactory solutions.

 1.5. Teaching methods
 Iectures
 individual assignment

 Image: seminars and workshops methods
 Image: multimedia and network

 Image: seminars and workshops methods
 Image: multimedia and network

 Image: seminars and workshops methods
 Image: multimedia and network

 Image: seminars and workshops methods
 Image: multimedia and network

 Image: seminars and workshops methods
 Image: multimedia and network

 Image: seminars and workshops methods
 Image: multimedia and network

 Image: seminars and workshops methods
 Image: multimedia and network

 Image: seminars and workshops methods
 Image: multimedia and network

 Image: seminars and workshops methods
 Image: multimedia and network

 Image: seminars and workshops methods
 Image: multimedia and network

 Image: seminars and workshops methods
 Image: multimedia and network

 Image: seminars and workshops methods
 Image: multimedia and network

 Image: seminars and workshops methods
 Image: multimedia and network

 Image: seminars and workshops methods
 Image: multimedia and network

 Image: seminars and workshops methods
 Image: multimedia and networkshops methods

 Image: seminars and workshops methods
 Image: multimage: multimage: multimage: multimedia and networkshops methods</

1.7. Student's obligations

Course attendance, activity, sustained knowledge check, seminar paper, studying.

1.8. Evaluation of student's work

Course attendance	1.5	Activity/Participation		Seminar paper	1	Experimental work	
Written exam	1.5	Oral exam		Essay		Research	
Project		Sustained knowledge check	1	Report		Practice	

Portfolio				

1.9. Procedure and examples of learning outcome assessment in class and at the final exam

Course attendance, activity, sustained knowledge check, seminar paper, written and oral exam or their combination.

1.10. Assigned reading (at the time of the submission of study programme proposal)

Teaching material of class: "Ship Negotiation Process"

"Shipbuilding Contracts", Hill Dickinson, Liverpool, England, 2010

"Standard shipbuilding Contract AWES 99", Association of European Shipbuilders and Shiprepairrs, 2002. Benford, H.: Temeljna načela inženjerske ekonomije u projektiranju broda, Tehniki fakultet Rijeka i Brodogradilište "3.maj" Rijeka

1.11. Optional / additional reading (at the time of proposing study programme)

Simon Curtis, The Law of Shipbuilding Contracts, 2012.

Hunt, C. E., Butman, S. B., Marine Engineering Economics and Cost Analysis, Cornell Maritime Press, 1995. Benford, H.: Temeljna načela inženjerske ekonomije u projektiranju broda, Tehniki fakultet Rijeka i Brodogradilište "3.maj" Rijeka, 1985.

Erichsen, S., Management of Marine Design, Butherworts, London, 1989

1.12. Number of assigned reading copies with regard to the number of students currently attending the course

5		
Title	Number of copies	Number of students
Teaching material of class: "Ship Negotiation Process", pdf		
Benford, H.: Temeljna načela inženjerske ekonomije u projektiranju broda, Tehnički fakultet Rijeka i Brodogradilište "3.maj" Rijeka	4	15
Shipbuilding Contracts", Hill Dickinson, Liverpool, England, 2010	2	15
"Standard Shipbuilding Contract AWES 99", Association of European Shipbuilders and Shiprepairs, 2002.	2	15

1.13. Quality monitoring methods which ensure acquirement of output knowledge, skills and competences

Basic description				
Course title	Ship Outfitting and Repair			
Study programme	Graduate University Study of Naval Architecture			
Course status	optional			
Year	1.			
ECTS credits and	ECTS student 's workload coefficient	5		
teaching	Number of hours (L+E+S)	45+15+0		

1.1. Course objectives

Introduction to documentation and procedures of fabrication and installation of the ship equipment, as well as to monitoring work execution, quality control, testing and monitoring ship outfitting costs in accordance with defined learning outcomes.

1.2. Course enrolment requirements

None.

1.3. Expected course learning outcomes

Explain and interpret the significance and complexity of ship outfitting and its structure and sequence. Apply the breakdown of the ship and the basic tenets of the ship outfitting process. Argue the benefits of outfitting ship sections and modular outfitting. Use adequate documentation in the process of ship outfitting. Analyze technological solutions for ship outfitting, outfitting process, quality control, testing procedures and costs. Develop a basic scheduler of outfitting works, estimate required man hours, and the calculation of the required workforce by profession and a list and plan of outfitting activities. Describe the technological process of ship outfitting regarding ship piping workers, mechanics, electricians, locksmiths, metalworkers, insulation workers and painters. Interpret and use curriculum of ship trial process. Define and describe the repair works and services. Describe the technological processes of ship repair. Distinguish types of docks and docking procedures.

1.4. Course content

Meaning and scope of ship outfitting. Product work breakdown structure. Basic scheme of ship outfitting process. Technological solutions and improvement of ship outfitting. Modular and advance ship outfitting. Structure, division and sequences of outfitting. Making a list and a plan of outfitting works. Monitoring the execution of works, quality, testing and direct costs. Piping works. Pipe blocks Installation of ship main engine, shaft and other machinery and equipment. Processing and installation of propeller shaft and rudder bearing. Installation of ship electrical equipment. Installation of ship cables. Description of metalwork, carpenter works, insulation and painting works. Monitoring the outfitting works and repairs, inspections, tests and ship trial. The purpose and reasons for the ship repair. Breakdown and description of ship repair. Repair facilities capacities and their utilization. Docks. Works and services in docking and ship repair. Ship Demolition and Recycling activities.

1.5. Teaching methods	 lectures seminars and workshops exercises long distance education fieldwork 	 individual assignment multimedia and network laboratories mentorship other
1.6. Comments		

1.7. Student's obligations

Course attendance, activity, sustained knowledge check, seminar paper, studying.

1.8. Evaluation of student's work Course Experimental 2 Activity/Participation Seminar paper 1 attendance work Written exam 0.5 Oral exam 0.5 Essay Research Sustained knowledge Project 1 Report Practice check Portfolio

1.9. Procedure and examples of learning outcome assessment in class and at the final exam

Course attendance, activity at lectures and laboratory practice, sustained knowledge check (two midterm exams), seminar paper, written and oral exam or their combination.

1.10. Assigned reading (at the time of the submission of study programme proposal)

Matulja, T.: Teaching material published on e-learning course Skip Outfitting and Repair, 2021. Butler, D., Guide to Ship Repair Estimates, Butterworth Heinemann, Oxford, 2000.

House, D.J., Dry Docking and Shipboard Maintenance, Witherby & Co. Ltd., London, 2003.

1.11. Optional / additional reading (at the time of proposing study programme)

Marušić, I.: Piping in Shipbuilding, Školska knjiga, Zagreb, 1983. (in Croatian)

Čujić, M.: Metalworks in Shipbuilding, Školska knjiga, Zagreb, 1984. (in Croatian)

1.12. Number of assigned reading copies with regard to the number of students currently attending the course

Title	Number of copies	Number of students
Matulja, T.: Teaching material published on e-learning course Skip Outfitting and Repair, 2021.		
Butler, D., Guide to Ship Repair Estimates, Butterworth Heinemann, Oxford, 2000.	1	26
House, D.J., Dry Docking and Shipboard Maintenance, Witherby & Co. Ltd., London, 2003.	1	26

1.13. Quality monitoring methods which ensure acquirement of output knowledge, skills and competences

Basic description				
Course title	Ship Stability in Exploitation			
Study programme	Graduate University Study of Naval Architecture			
Course status	optional			
Year	2.			
ECTS credits and	ECTS student 's workload coefficient	5		
teaching	Number of hours (L+E+S) 45+30+0			

1.1. Course objectives

Creating preconditions for complex recognizing of the importance of buoyancy and stability of the ship in service. Connectivity issues of buoyancy and stability of the ship in operation, with safety of the ship and crew (passengers) as well as environmental protection.

1.2. Course enrolment requirements

None.

1.3. Expected course learning outcomes

Describe the problems of buoyancy and stability of the ship in service. Argue transverse and longitudinal subdivision of the ship. Identify and analyze the ship loading condition and loading, unloading and transfer of cargo. Describe computer tools on board to check buoyancy, static and dynamic stability and shear forces and moments. Analyze the factors affecting the stability of the ship (liquid and bulk cargo, water penetration, waves). Argue the environmental aspects of exploitation. Describe the rules of classification societies and international recommendations and conventions. Describe the probabilistic approach to damage stability. Describe ships parametric rolling and dynamic effects influence on stability.

1.4. Course content

Introduction to buoyancy and stability of the ship in service. Transverse and longitudinal subdivision of the ship. Ship loading conditions. Loading, unloading and transfer of cargo on board. Computer tools on board to check buoyancy, static and dynamic stability and shear forces and moments. Ways to minimize the negative influence of liquid cargoes and the decanting of bulk cargo on the ship's stability in operation. Dangers in exploitation. Water intrusion alarm systems. Crossleveling ship systems. Ecological aspects of exploitation. Regulations of classification societies and international recommendations and conventions. Probabilistic approach to damage stability. Ships parametric rolling and dynamic effects influence on stability.

11	0	7 1 1	0 /			/	
1.5. Teaching methods	,	 lectures seminars and worksho exercises long distance educatio fieldwork 	ops on	indivi	dual as media atories orship	signment and network	
1.6. Commen	ts						
1.7. Student's obligations							
Attendance, class participation, seminar paper, studying.							
1.8. Evaluation of student's work							
Course	2.5	Activity/Participation	Semin	ar paper	0.5	Experimental	

attendance				work	
Written exam	Oral exam	1	Essay	Research	
Project	Sustained knowledge check	1	Report	Practice	
Portfolio					

1.9. Procedure and examples of learning outcome assessment in class and at the final exam

Attendance, continuous assessment (2 mid-term exams), seminar project, written examination, oral examination, or any combination of these forms.

1.10. Assigned reading (at the time of the submission of study programme proposal)

Watson, D.: Practical Ship Design, Elsevier Science Ltd., Oxford, 1998.

Schneekluth, H., Bertram, V.: Ship Design for Efficiency & Economy, Butterworth Heinemann, Oxford, 1998. ..., Principles of Naval Architecture, The Society of Naval Architects and Marine Engineers, Jersey Biran, A. B.: Ship hydrostatics and stability, 2006.

Van Dokkum. K.: Ship stability, Dokmar Maritime Publishers; 4th edition including CD ROM, 2013.

1.11. Optional / additional reading (at the time of proposing study programme)

Belamarić, I.: Ship and Entropy, Književni krug, Split, 1998. (in Croatian)

..., Rules for Ship Technical Survey, Part 1.-8., Hrvatski registar brodova, Split, 1999. (in Croatian) Guidelines for the use of software packages for basic design calculations and description of marine forms.

1.12. Number of assigned reading copies with regard to the number of students currently attending the course

Title	Number of copies	Number of students
Watson, D.: Practical Ship Design, Elsevier Science Ltd., Oxford, 1998.	1	10
Schneekluth, H., Bertram, V.: Ship Design for Efficiency & Economy, Butterworth Heinemann, Oxford, 1998.	1	10
Principles of Naval Architecture, The Society of Naval Architects and Marine Engineers, 1988-1989	1	10
Biran, A. B.: Ship hydrostatics and stability, 2006.	1	10
Van Dokkum. K.: Ship stability, Dokmar Maritime Publishers; 4th edition including CD ROM, 2013.	1	10

1.13. Quality monitoring methods which ensure acquirement of output knowledge, skills and competences

Through a structured system of quality assurance of the Faculty.

Basic description				
Course title	Ship Structural Design			
Study programme	Graduate University Study of Naval Architecture			
Course status	compulsory			
Year	1.			
ECTS credits and	ECTS student 's workload coefficient 5			
teaching	Number of hours (L+E+S) 30+30+0			

1.1. Course objectives

Obtaining theoretical knowledge and introducing basic methods and procedures for direct determination of global and local ship hull girder strength in frame of ship hull structural design.

1.2. Course enrolment requirements

None.

1.3. Expected course learning outcomes

Indicate and properly interpret the type of analysis of the ship hull structure strength assessment. Explain the phases of ship longitudinal strength calculation. To calculate distribution of normal and shear stresses on the cross section of the hull. Identify appropriate methods of direct calculation and assessment for local strength of the ship. Define and correctly interpret the bending and torsion of the ship's hull as a thin-walled beam. Define and correctly interpret the buckling of individual elements of the hull structure (truss, beam) and simple structure (panel, stiffened panel). Define and correctly interpret the plate bending (isotropic and orthotropic). Check the dimensions of the main structural elements of a merchant ship type obtained by the rules and regulations of a classification society in respect to the direct calculation method. Evaluate the results of direct calculation methods.

1.4. Course content

Fundamentals of the strength analysis of ship hull and structural elements within ship structural design process. Ship structural load. Ship structure model for longitudinal, transversal and local strength assessment.

Ship hull as thin-walled structure, bending and torsion. Calculation of the normal and shear stresses. Effective plating. Influence of shear stresses to normal stresses and deformation. Torsion of open, closed and multi-cell section. Plates strength assessment in ship construction, isotropic and orthotropic plate bending. Fundamentals of stability calculations of the ship and structural elements.

1.5. Teaching methods	 lectures seminars and workshops exercises long distance education fieldwork 	 individual assignment multimedia and network laboratories mentorship other 			
1.6. Comments					
1.7. Student's obliga	tions				
Course attendance, activity, project work, studying					
1.8. Evaluation of student's work					

Course attendance	2	Activity/Participation		Seminar paper	Experimental work	
Written exam		Oral exam	0.5	Essay	Research	
Project	1	Sustained knowledge check	1.5	Report	Practice	
Portfolio						

1.9. Procedure and examples of learning outcome assessment in class and at the final exam

Course attendance, activity, continuous knowledge testing (two mid-term exams), project work, written and oral exam

1.10. Assigned reading (at the time of the submission of study programme proposal)

Zamarin, A.: Ship Strength, internal script available over *Chair for floating objects construction* web page. (in Croatian)

Uršić, J.: Ship Strenght I, Sveučilište u Zagrebu, 1991. (in Croatian)

Uršić, J.: Ship Strenght II, Sveučilište u Zagrebu, 1992. (in Croatian)

1.11. Optional / additional reading (at the time of proposing study programme)

Hughes, O. F, Paik, J.K.: Ship structural design, SNAME, New Jersey, 2010.

Paik, J. K.: Ultimate limit state design of steel-plated structures, John Wiley & Sons, West Sussex, 2006.

1.12. Number of assigned reading copies with regard to the number of students currently attending the course

Title	Number of copies	Number of students
Zamarin, A.: Ship Strength, internal script available over <i>Chair for floating objects construction</i> web page. (in Croatian)	18	18
Uršić, J.: Ship Strenght I, Sveučilište u Zagrebu, 1991. (in Croatian)	2	18
Uršić, J.: Ship Strenght II, Sveučilište u Zagrebu, 1992. (in Croatian)	2	18

1.13. Quality monitoring methods which ensure acquirement of output knowledge, skills and competences

Basic description			
Course title	Ship Structural Analysis		
Study programme	Graduate University Study of Naval Architecture		
Course status	optional		
Year	1.		
ECTS credits and	ECTS student 's workload coefficient	5	
teaching	Number of hours (L+E+S)	30+30+0	

1.1. Course objectives

Within the course students will introduced ship structural design basics and learn the theoretical basis and the application of methods and procedures for the direct determination of global and local strength of ship hull. Team work skills in small groups.

1.2. Course enrolment requirements

None.

1.3. Expected course learning outcomes

Specify and correctly interpret the objectives and basic procedures for ship hull structural design according to strength criteria, within ship design. Specify and correctly interpret the design loads and types of ship structural analysis. Identify and explain appropriate methods and criteria for evaluation of the longitudinal, transversal and local strength of the ship. Specify and correctly interpreted basic principles of the finite element method. Define structure model applicable to different type of analysis. Apply state-of-the-art computer programs in modelling hull structure and calculation of stress and strain of the structural elements. Analyse the results in terms of fulfilling strength and reliability criteria.

1.4. Course content

Basic settings, procedures and methods in ship's structural design within the process of ship design. Types of analyses of the ship structure; static, quasi-static, dynamic. Fundamentals in fluid structure interaction. Basics of structure modelling, static and quasi-static analysis of hull structure in the elastic range. Review and application of finite element method in hull structure analysis. Selection of appropriate types of finite elements, modelling of loads and boundary conditions. Particulars in modelling; symmetry of the structure and the load. Procedure for ship ultimate strength calculation. Fundamentals of fatigue strength assessment. Application of the general purpose and/or special software in modelling and analysis of the hull structure elements.

1.5. Teaching methods	 lectures seminars and workshops exercises long distance education fieldwork 	 individual assignment multimedia and network laboratories mentorship other 			
1.6. Comments					
1.7. Student's obliga	tions				
Course attendance, activity, project work, studying					
1.8. Evaluation of student's work					

Course attendance	2	Activity/Participation		Seminar paper	Experimental work	
Written exam		Oral exam	0.5	Essay	Research	
Project	1.5	Sustained knowledge check	1	Report	Practice	
Portfolio						

1.9. Procedure and examples of learning outcome assessment in class and at the final exam

Course attendance, activity, continuous knowledge testing (one mid-term exams), project work, written and oral exam

1.10. Assigned reading (at the time of the submission of study programme proposal)

Senjanović, I.: FME in Ship Strucures Analysis, Sveučilište u Zagrebu, 1998. (in Croatian) Uršić, J.: Ship Strenght II, Sveučilište u Zagrebu, 1992. (in Croatian)

Hughes, O. F., Paik, J. K.: Ship structural design, SNAME, New Jersey, 2010.

1.11. Optional / additional reading (at the time of proposing study programme)

Paik, J. K.: Ultimate limit state design of steel-plated structures, John Wiley & Sons, West Sussex, 2006. Okumoto, Y., Takeda, Y., Mano, M., Okada T.: Design of Ship Hull structures, Springer, 2009.

1.12. Number of assigned reading copies with regard to the number of students currently attending the course

Title	Number of copies	Number of students
Senjanović, I.: FME in Ship Strucures Analysis, Sveučilište u Zagrebu, 1998. (in Croatian)	5	14
Uršić, J.: Ship Strenght II, Sveučilište u Zagrebu, 1992. (in Croatian)	2	14
Hughes, O. F., Paik, J. K.: Ship structural design, SNAME, New Jersey, 2010.	1	14

1.13. Quality monitoring methods which ensure acquirement of output knowledge, skills and competences

Basic description			
Course title	Ship Systems		
Study programme	Graduate University Study of Naval Architecture		
Course status	compulsory		
Year	1.		
ECTS credits and	ECTS student 's workload coefficient	5	
teaching	Number of hours (L+E+S)	45+15+0	

1.1. Course objectives

Obtaining theoretical knowledge and develop skills to solve practical problems in the field of ship systems and design of ship systems.

1.2. Course enrolment requirements

None.

1.3. Expected course learning outcomes

Define and analyze ship propulsion systems of ships with diesel engine propulsion plants. Describe ship propulsion systems of ships with turbine propulsion. Describe and analyze ship ballast and bilge systems. Describe ship sanitary systems and fresh water systems. Describe and compare systems for cargo loading and unloading. Describe and analyze ship systems for cargo heating. Describe and compare ship fire fighting systems. Describe ship systems on LNG tankers.

1.4. Course content

Generally on ship systems. Rules for design, building and maintenance of ship systems. Fuel oil systems. Ship cooling systems. Compressed air systems. Lubrication oil systems. Other ship engine systems. Ballast systems. Bilge systems. Sanitary systems. Fire fighting systems. Other ship common systems. Systems for cargo loading and unloading. Inert gas systems. Tank cleaning systems. Special systems on chemical tankers. Special systems on LNG and LPG ships. Ship control systems.

1.5. Teaching methods		□ lectures □ □ seminars and workshops □ □ exercises □ □ long distance education □ □ fieldwork □		indivio	 individual assignment multimedia and network laboratories mentorship other 		
1.6. Commen	ts						
1.7. Student's	1.7. Student's obligations						
Course attendance	e, activi	ty, homework, studying.					
1.8. Evaluatio	on of stu	ident's work					
Course attendance	2	Activity/Participation		Seminar paper	0.2 5	Experimental work	
Written exam		Oral exam	0.7 5	Essay		Research	

Project		Sustained knowledge check	2	Report	P	ractice		
Portfolio								
1.9. Procedui	1.9. Procedure and examples of learning outcome assessment in class and at the final exam							
Course attendand exam.	Course attendance, seminar paper, continuous knowledge testing (two mid-term exams), oral or written exam.							
1.10. A	1.10. Assigned reading (at the time of the submission of study programme proposal)							
Ozretić, V.: Marin Martinović, D.: M	Ozretić, V.: Marine Auxiliary Machinery and Devices, Dalmacijapapir, Split, 1996. (in Croatian) Martinović, D.: Marine Machinery Systems, Digital point, Rijeka, 2005. (in Croatian)							
1.11. O	ptional	/ additional reading (at th	e time	of proposing study	rogramn	ne)		
Smith, D. W.: Mar Knak, C.: Diesel N	Smith, D. W.: Marine Auxiliary Machinery, Butterworths, London, 1988. Knak, C.: Diesel Motor Ships, Engines and Machinery, Institute of Marine Engineers, 1990.							
1.12. N attendin	umber g the co	of assigned reading cop urse	oies wit	th regard to th	e number	of students cu	rrently	
		Title		Numbe	er of copies	Number student	of s	
Ozretić, V.: Marin Dalmacijapapir, S	Ozretić, V.: Marine Auxiliary Machinery and Devices, Dalmacijapapir, Split, 1996. (in Croatian) 8 30							
Martinović, D.: Marine Machinery Systems, Digital point, Rijeka, 2005. (in Croatian) 3 30								

1.13. Quality monitoring methods which ensure acquirement of output knowledge, skills and competences

Basic description			
Course title	Shipyard Design		
Study programme	Graduate University Study of Naval Architecture		
Course status	optional		
Year	2.		
ECTS credits and	ECTS student 's workload coefficient 5		
teaching	Number of hours (L+E+S)	30+30+0	

1.1. Course objectives

Introducing to the features and design methodology of shipyards related to defined learning outcomes.

1.2. Course enrolment requirements

None.

1.3. Expected course learning outcomes

Explain and interpret the development of the shipyard. Systematize and classify the shipyard. Compare and analyze existing shipyards. Analyze and determine the location of the shipyard. Develop a general plan for the shipyards. Define the capacity of the shipyard. Apply the methodology of designing shipyards. Describe and define basic material flows. Describe and choose the means of production, equipment and facilities of the shipyard. Interpret production focus. Define shipyard work areas.

1.4. Course content

The historical development of the shipyard. Types of shipyards. Limitations. Location analysis and selection. General plan of shipyard. Cooperation, capacity and structure of the shipyard. Comparative analysis of existing shipyards. Design methodology and manufacturing processes. (Strategic planning, Feasibility study. Conceptual design). Calculation of production focuses of shipyards, warehouses, workshops, assembly areas. Qualitative and quantitative material flows. Means of production, equipment and facilities of the shipyard. Energy in the shipyard. Green shipyards.

1.5. Teaching \boxtimes exercises methods

 \bowtie lectures seminars and workshops 🛛 long distance education fieldwork

 \times individual assignment multimedia and network \boxtimes laboratories Mentorship other

1.6. Comments

1.7. Student's obligations

Course attendance, activity, homework, studying.

1.8. Evaluation of student's work

Course attendance	2	Activity/Participation		Seminar paper	Experimental work	
Written exam	0.5	Oral exam	0.5	Essay	Research	
Project	1	Sustained knowledge check	1	Report	Practice	

Portfolio						
1.9. Procedure and examples of learning outcome assessment in class and at the final exam						
Course attendance, activity, continuous knowledge testing (two mid-term exams), Seminar paper, written exam, oral exam.						
1.10. Assigned reading (at the time of the submission of study programme proposal)						
Matulja, T.: Teaching material published on e-learning course Shipyard Design, 2021. Stephens, M.P., Meyers, F.E., Manufacturing Facilities Design & Material Handling, 5th edition, Prentice Hall, 2013. Tompkins, J.A., et al., Facilities Planning, 4th edition, Wiley, 2010. Gaythwaite, J.W., Design of Marine Facilities for the Berthing, Mooring and Repair of Vessels. 2004.						
1.11. Optional / additional reading (at the time of pro	posing study programm	e)				
Winston, W.L., Operations research - Aplication and Algorithms	Duxbury Press, Belmor	it, 2003.				
1.12. Number of assigned reading copies with reg attending the course	ard to the number	of students currently				
Title	Number of copies	Number of students				
Matulja, T.: Teaching material published on e-learning course Shipyard Design, 2021.		20				
Stephens, M.P., Meyers, F.E., Manufacturing Facilities Design & Material Handling, 5th edition, Prentice Hall, 2013.	1	20				
Tompkins, J.A., et al., Facilities Planning, 4th edition, Wiley, 201	0. 1	20				
Gaythwaite, J.W., Design of Marine Facilities for the Berthing, Mooring and Repair of Vessels, 2004.120						
1.13. Quality monitoring methods which ensure a competences	cquirement of output i	knowledge, skills and				
Through the Institution's quality assurance system.						

Basic description				
Course title Shipyard Organization and Management				
Study programme	amme Graduate University Study of Naval Architecture			
Course status	optional			
Year	2.			
ECTS credits and	ECTS student 's workload coefficient	5		
teaching	Number of hours (L+E+S)	30+15+0		

1.1. Course objectives

Within the course students acquire the basic knowledge of shipyard organization and management related to defined learning outcomes.

1.2. Course enrolment requirements

None.

1.3. Expected course learning outcomes

Interpret business systems with a single production. Analyze shipyard business management. Explain and describe the business policy of the shipyard. Analyze the shipbuilding market. Define shipyard production program. Analyze shipyard manufacturing processes. Interpret shipyard financing. Interpret and explain the organization of the shipyard. Distinguish contemporary organizational tendencies in shipbuilding. Compare the situation, problems and trends in the development of the Croatian shipbuilding.

1.4. Course content

Basics of Organisation. Operating system with individual production. Managing business system. Shipyard as a business system with a single production. Business policy. Shipbuilding policy. Shipbuilding market. The production process in the shipyard. Costs. Funding shipyards. Organization of the shipyards (Organizational structure. Organization of elements of organizational structure. Organizational dynamics.). Management of the shipyard. Modern organizational tendencies in shipbuilding. The organization and operation of ship repairing. Development of modern production. Case studies.

1.5. Teaching methods

lectures
 seminars and workshops
 exercises
 long distance education
 fieldwork

individual assignment
 multimedia and network
 laboratories
 mentorship
 other

1.6. Comments

1.7. Student's obligations

Course attendance, activity, homework, studying.

1.8. Evaluation of student's work Course Experimental 1.5 Activity/Participation Seminar paper 1.5 attendance work Written exam 0.5 Oral exam 0.5 Research Essay Sustained knowledge Project 1 Report Practice

	check			
Portfolio				

1.9. Procedure and examples of learning outcome assessment in class and at the final exam

Course attendance, activity, continuous knowledge testing (two mid-term exams), Seminar paper, written exam, oral exam.

1.10. Assigned reading (at the time of the submission of study programme proposal)

Matulja, T.: Teaching material published on e-learning course Shipyard Organization and Management, 2021. Papall, L., et al., Industrial Organization: Contemporary Theory and Empirical Applications, 5th Edition, Wiley, 2014.

Tod, D., The World Shipbuilding industry, Croom Helm Australia, Sydney, 2001.

Hunt, C. E., Butman, S. B., Marine Engineering Economics and Cost Analysis, Cornell Maritime Press, 1995.

1.11. Optional / additional reading (at the time of proposing study programme)

Sikavica, P.: Organizacija, ŠK, Zagreb, 2011.

Jurković, M.: Reinženjering proizvodnih poduzeća, Grafičar, 2011

1.12. Number of assigned reading copies with regard to the number of students currently attending the course

Title	Number of copies	Number of students
Matulja, T.: Teaching material published on e-learning course Shipyard Organization and Management, 2021.		
Papall, L., et al., Industrial Organization: Contemporary Theory and Empirical Applications, 5th Edition, Wiley, 2014.	1	12
Tod, D., The World Shipbuilding industry, Croom Helm Australia, Sydney, 2001.	1	12
Hunt, C. E., Butman, S. B., Marine Engineering Economics and Cost Analysis, Cornell Maritime Press, 1995.	1	12

1.13. Quality monitoring methods which ensure acquirement of output knowledge, skills and competences

Basic description				
Course title	Small Craft Construction			
Study programme	Graduate University Study of Naval Architecture			
Course status	optional			
Year	1.			
ECTS credits and	ECTS student 's workload coefficient	5		
teaching	Number of hours (L+E+S)	30+30+0		

1.1. Course objectives

Within the course, students will gain a basic understanding of the small craft structural elements, and get familiar with the empirical approach to scantling determination of single hull vessels of up to 24m with restricted service area made of wood, composite or aluminum.

1.2. Course enrolment requirements

None.

1.3. Expected course learning outcomes

Indicate and correctly interpret the type of structural load of small crafts. Distinguish materials for the construction by mechanical characteristics. To calculate design loads according to the rules and regulations of classification societies. Enumerate specific structural units and define their functions. Enumerate specific structural elements within the structural unit and explain ways to connect. Apply the rules and regulations of classification societies and calculate the dimensions of the elements of the hull structure of small crafts. Identify and define the parameters necessary for the dimensioning of a structural element (primary or secondary). Outline specific solutions to specific structural units considering the material of construction of small crafts. Analyze the results calculation in terms of respecting the criteria for dimensioning by classification societies.

1.4. Course content

Review of small craft types regarding size and function and application of construction materials; wood, composites and aluminum. Review of the load, global, local and design load. Basic small craft structural elements regarding to specific characteristics of the construction material (wood, composites, aluminum). Keel and stems. Bottom elements. Bottom in engine room, engine seats. Shell, frames, stringers. Deck, deck beams, longitudinal under deck girder, pillars. Bulkhead. Superstructure. Rudder, propeller brackets. Special structure reinforcement. Application of rules and regulations of different classification societies in designing, scantling determination and construction of the small crafts.

0		
1.5. Teaching methods	 lectures seminars and workshops exercises long distance education fieldwork 	 individual assignment multimedia and network laboratories mentorship other
1.6. Comments		
1.7. Student's obliga	tions	
Course attendance, activ	ity, project work, studying	

1.8. Evaluatio	on of stu	ident's work						
Course attendance	2	Activity/Participation		Semina	r paper	Exp wo	oerimental rk	
Written exam	0.5	Oral exam	0.5	Essay		Res	search	
Project	2	Sustained knowledge check		Report		Pra	ctice	
Portfolio								
1.9. Procedur	re and e	xamples of learning outco	me ass	essment	in class and	at the find	al exam	
Course attendanc	e, activi	ity, project work, written a	and ora	al exam				
1.10. A	ssigned	reading (at the time of th	e subr	nission of	study progr	amme pro	oposal)	
Zamarin, A.: Sma objects web page Grubišić, I.: Smal	II Craft , 2009. (Craft Co	Construction, Internal sc (in Croatian) nstruction, Digital Script, F	ript av SB Zag	ailable o reb 2005	ver <i>Chair fo</i> . (in Croatia	or constru in)	ction of the fl	loating
1.11. O	ptional	/ additional reading (at th	e time	of propos	sing study p	rogramme	2)	
Larsson, L., Eliasso Gerr, D.: The elen , Pravila i propis	on, R. E. nents of si klasifil	: Principles of yacht desigr boat strength, McGraw-H kacijskih društava ISO, LR-S	n, McGi Iill, 200 SSC, GL	raw-Hill, 2 0. , HRB, za	2000. brodove do	o 24m dulj	ine.	
1.12. N	umber	of assigned reading cop	ies wi	th regard	d to the i	number o	of students cu	rrently
attenain	g the co	urse						6
		Title			Number o	of copies	Number student	of ts
Zamarin, A.: Sma over <i>Chair for co</i> 2009. (in Croatian	all Craft onstruct i)	: Construction, Internal s tion of the floating objec	cript a cts we	vailable b page,	15	5	15	
Grubišić, I.: Smal 2005. (in Croatian	Craft Co ı)	nstruction, Digital Script, F	SB Zag	reb	15	5	15	
Larsson, L., Eliasso Hill, 2000.	on, R. E.	: Principles of yacht desigr	n, McGi	raw-	1		15	
Gerr, D.: The elen	nents of	boat strength, McGraw-H	lill, 200	0.	1		15	
, Rules and regu SSC, GL, HRB	llations	of the classification societ	ies ISO,	LR-	8		15	
1.13. Q compete	uality r nces	nonitoring methods whic	h ensu	re acqu	irement of	output k	nowledge, skil	lls and
Through the Instit	tution's	quality assurance system.						

Basic description				
Course title	Small Craft Design			
Study programme	Graduate University Study of Naval Architectu	ire		
Course status	optional			
Year	2.			
ECTS credits and	ECTS student 's workload coefficient	5		
teaching	Number of hours (L+E+S)	30+30+0		

1.1. Course objectives

Acquiring specific competencies in designing of small crafts. Developing the ability for solving problems set in order to define design requirements and to create a preliminary design of a small craft.

1.2. Course enrolment requirements

None.

1.3. Expected course learning outcomes

Describe the specifics of small crafts design, define the design objectives and analyze the concept design solutions. Differentiate the specificities in technical requirements of small crafts. Select the basic dimensions and hull shapes of small crafts. Analyze the choice of building materials. Distinguish special features of the structure and classification society's rules. Distinguish and compare the design specificities of different types of working and recreational small crafts.

1.4. Course content

Introduction to the small craft design. Design objectives. Conceptual design solutions. Specificities of the technical requirements of small crafts. Determination of the basic hull particulars and shapes of small crafts. Methods of estimation of masses and centers of gravity. The choice of building materials - steel, aluminum alloys, wood, fiberglass. Specificities of the structure and classification society's rules. Design specificities of different types of working and recreational small crafts.

1.5. Teaching methods	 lectures seminars and workshops exercises long distance education fieldwork 	 individual assignment multimedia and network laboratories mentorship other
1.6 Comments		

1.7. Student's obligations

Attendance, project development, independent learning.

1.8. Evaluatio	on of sti	ıdent's work				
Course attendance	2	Activity/Participation		Seminar paper	Experimental work	
Written exam		Oral exam	0.5	Essay	Research	
Project	2.5	Sustained knowledge check		Report	Practice	

Portfolio								
1.9. Procedure and exan	nples of learning outcor	ne asses	sment in o	class and	l at the	e final e	exam	
Course attendance, project v	with a presentation, ora	l exam.						
1.10. Assigned rea	nding (at the time of the	e submis	sion of stu	udy prog	ramm	e prop	osal)	
Papanikolau, A.: Ship Design Watson, D.: Practical Ship De Blount, D. L., Performance Beach, 2014. Larsson, L., Eliasson, R. E., Pri	- Methodologies of Pre esign, Elsevier Science Li by Design: Hydrodyna inciples of Yacht Design	liminary td., Oxfo mics for , Secono	Design, S rd, 1998. High-Spe I Edition, A	pringer, eed Vess Adlard C	Londo sels, D oles N	n, 2014 onald autical	4. L. Blount, ' , 2000	Virginia
1.11. Optional / ac	dditional reading (at the	e time of	proposin	g study p	orogra	mme)		
of Shipping, Split, 2013. (in C , Rules for Statuary Certificat , Rules for Statuary Certific , The rules of other classific 1.12. Number of attending the course	roatian) ions of Boats and Yacht ations of Fishing Vessel cation societies (LR, BV, assigned reading copi e	s, Croati s, Croati DNV, Gl es with	an Regist an Registe .,) regard t	er of Ship er of Ship to the	pping, oping, <i>numb</i>	Split, 2 Split, 2 er of	2010. (in Cro 012. (in Cro students cu	oatian) vatian) vrrently
	Title			Number	of cop	ies	Number studen	r of ts
Watson, D.: Practical Ship De 1998.	esign, Elsevier Science L	td., Oxfo	rd,	1	L		10	
Papanikolau, A.: Ship Design Design, Springer, London, 20	- Methodologies of Pre	liminary		1	1		10	
Larsson, L., Eliasson, R. E., Principles of Yacht Design, Second1Edition, Adlard Coles Nautical, 2000.1								
Larsson, L., Eliasson, R. E., Pri Edition, Adlard Coles Nautica	114. inciples of Yacht Design al, 2000.	, Second	I	1	1		10	

Through a structured system of quality assurance of the Faculty.

Basic description				
Course title	Small Crafts Equipment			
Study programme	Graduate University Study of Naval Architecture			
Course status	optional			
Year	2.			
ECTS credits and	ECTS student 's workload coefficient	5		
teaching	Number of hours (L+E+S)	30+30+0		

1.1. Course objectives

Within the course students acquire the basic knowledge of the elements, equipment and outfitting systems of small crafts related to defined learning outcomes.

1.2. Course enrolment requirements

None.

1.3. Expected course learning outcomes

Apply technical requirements, conventions, regulations, standards. Specify and describe hull equipment. Describe hull protection systems and equipment. Specify and describe the equipment for safety. Define and describe the helming gear, navigation and communication equipment. Interpret and describe outfitting systems. Develop schematics drawings for small craft system. Define and describe the equipment for mooring, anchoring and towing. Define and describe the equipment of the ship engine. Describe the specific equipment on special vessels.

1.4. Course content

Technical requirements, conventions, regulations, standards. Equipment for anchoring, mooring and towing. Lights and signalling devices. Equipment for steering, navigation and communication. Engines and related devices and outfitting systems. Systems of electricity. Systems of drinking and waste water. Equipment and systems for safety and rescue. Fire-fighting equipment. Partitions, doors, windows, openings. Isolation and air conditioning. Equipment quarters. Restraints troops and equipment. Special equipment: fishing boats, sailboats, boats to transport passengers / divers, fire boats and other special small vessels.

1.5. Teaching methods

lectures
 seminars and workshops
 exercises
 long distance education

imes fieldwork

individual assignment
 multimedia and network
 laboratories
 mentorship

other

1.6. Comments

1.7. Student's obligations

Course attendance, activity, homework, studying.

1.8. Evaluation of student's work

Course attendance	2	Activity/Participation		Seminar paper	Experimental work	
Written exam	0.5	Oral exam	0.5	Essay	Research	

Project	1	Sustained knowledge check	1	Report		Practice			
Portfolio									
1.9. Procedure and examples of learning outcome assessment in class and at the final exam									
Course attendance, activity, continuous knowledge testing (two mid-term exams), Seminar paper, written exam, oral exam.									
1.10. A	1.10. Assigned reading (at the time of the submission of study programme proposal)								
Matulja, T.: Teach Nicolson, I., The B Gerr, D., Boat Me Larsson, L., Eliasso	Matulja, T.: Teaching material published on e-learning course Small Crafts Equipment, 2021. Nicolson, I., The Boat Data Book, 7th Edition, ACN London, 2014. Gerr, D., Boat Mechanical Systems Handbook. ACN London, 2009.								
1.11. C	ptional	/ additional reading (at the	e time	of proposir	ng study progra	mme)			
Payne, J.: The Ma Ask, T.: Handbool Delić, S.: Sailing Y	Payne, J.: The Marine Electrical and Electronics Bible. Adlard Coles Nautical, III. Edition, London, 2007. Ask, T.: Handbook of Marine Surveying. Sheridan House, II. Edition, NY, 2007. Delić, S.: Sailing Yachts Equipment, Biblioteka More, 2008. (in Croatian)								
1.12. N attendin	lumber g the co	of assigned reading copi	ies wit	th regard	to the numb	er of stu	idents cu	rrently	
	Title Number of copies Students								
Matulja, T.: Tead Small Crafts Equip	ching m oment, 2	aterial published on e-lea 2021.	arning	course					
Nicolson, I., The B	Boat Dat	a Book, 7th Edition, ACN Lo	ondon	, 2014.	1		12		
Gerr, D., Boat Me	chanica	l Systems Handbook. ACN I	Londoi	n, 2009.	1		12		
Larsson, L., Eliasson. R., Principles of Yacht Design, International Marine, 4th Edition, 2013.									
1.13. Quality monitoring methods which ensure acquirement of output knowledge, skills and competences									

Basic description							
Course title	Technological Process of Shipbuilding	Technological Process of Shipbuilding					
Study programme	Graduate University Study of Naval Architecture						
Course status	optional						
Year	1.						
ECTS credits and	ECTS student 's workload coefficient	6					
teaching	Number of hours (L+E+S)	30+30+0					

1.1. Course objectives

Within this course students gain knowledge about technological process of shipbuilding in accordance with defined learning outcomes.

1.2. Course enrolment requirements

None.

1.3. Expected course learning outcomes

Define the shipbuilding business and manufacturing process as well as types of basic processes. To analyze the characteristics of the ship production process. Describe techniques for representing work, processes and procedures. Interpret various ship breakdown approaches. Analyze the preparatory phase of the ship production. Describe and differentiate the documentation for ship production. Analyze the study of work and time, and to define work normative. Describe the preparation of production documentation, materials and production resources. Interpret software support for ship production process. Analyze performance indicators for business, development and improvement of ship production process.

1.4. Course content

Introduction. Definition of shipbuilding business process. Definition and types of basic processes. Characteristics of ship production process. Techniques for representing work, process and procedures. Functional and technological ship breakdown. Planing and preparing stage of shipbuilding process. Ship production documentation, types and division. Preparation and analysis of working documentation, materials and production resources for process inprovment. Efficiency indicators of ship production process. Process rationalization, optimisation and effectiveness improvement. Operational research methods aplications for process improvement. Process software support and simulation modeling of production process.

1.5. Teaching methods		 lectures seminars and worksho exercises long distance education fieldwork 	ops on	 individual assignment multimedia and network laboratories mentorship other 			
1.6. Commen	ts						
1.7. Student's obligations							
Course attendance, activity, sustained knowledge check, seminar paper, studying.							
1.8. Evaluation of student's work							
Course	2	Activity/Participation	Semin	ar paper	1	Experimental	

		1							
attendance						work			
Written exam	1	Oral exam		Essay		Research			
Project		Sustained knowledge check	2	Report		Practice			
Portfolio									
1.9. Procedur	1.9. Procedure and examples of learning outcome assessment in class and at the final exam								
Course attendance, activity, sustained knowledge check (two mid-term exams), seminar paper, written and oral exam or their combination.									
1.10. A	ssigned	reading (at the time of the	e subm	ission of stu	dy programme	e proposal)		
Teaching materia Storch, R. L., et al Steffen Bangsow, Springer, 2015.	l of class ., Ship P Techno	s: "Technological Process o roduction, 2nd edition, SN, matix Plant Simulation Mo	f Shipt AME, 2 delling	ouilding" 2007. ; and Program	mming by Mea	ans of Exa	mples,		
1.11. O	ptional	/ additional reading (at the	e time	of proposing	study program	nme)			
Jingshan Li, Semy London, 1995. W 2003 Jerry Banks, Discr Chang, Y. R., Kelly Fei Tao, Meng Zh	Jingshan Li, Semyon M.Meerkov: Production, SNAME, 2003 London, 1995. Winston, W.L., Operations research - Application and Algorithms. Duxbury Press, Belmont, 2003 Jerry Banks, Discrete Event System Simulation, 2005 Chang, Y. R., Kelly, K. P., Improving through Benchmarking, Kogan Page Ltd., London, 1995. Fei Tao, Meng Zhang et al, Digital Twin Driven Smart Manufacturing, 2019								
1.12. N attendin	umber g the co	of assigned reading copi purse	es wit	th regard to	o the numbe	er of stud	dents cu	rrently	
		Title		٨	lumber of copi	es	Number student	of ts	
Teaching materia Shipbuilding", pdf	Teaching material of class: "Technological Process of Shipbuilding", pdf								
Storch, R. L., et al., Ship Production, 2nd edition, SNAME, 2007. 1 10									
Steffen Bangsow, Technomatix Plant Simulation Modelling and Programming by Means of Examples210									
1.13. Q compete	uality r nces	monitoring methods which	n ensu	re acquirei	ment of outpu	ıt knowle	dge, skil	lls and	

Basic description							
Course title	Welding Engineering	Welding Engineering					
Study programme	Graduate University Study of Naval Architecture						
Course status	optional						
Year	2.						
ECTS credits and	ECTS student 's workload coefficient 5						
teaching	Number of hours (L+E+S) 30+30+0						

1.1. Course objectives

The course is designed to provide the student with knowledge in welding engineering topics. Student is introduced with practical application of several welding processes.

1.2. Course enrolment requirements

None.

1.3. Expected course learning outcomes

Select a welding process for given base material. Explain weldability and describe the specifics of welding alloy steel, cast iron, aluminium and copper alloys. Select welding consumables. Calculate power requirements and consumption of welding consumables for arch welding. Propose a method for welds quality control. Prepare welding procedures.

1.4. Course content

Historical development of welding processes. Pressure welding processes. Fusion welding processes. Arc welding. Arc characteristics. Heat input. Classification of power sources. Power source equipment. Welding metallurgy. Metal transfer in arc welding. Microstructure of welded joints. Weldability. Preheating. Welded joint heat treatment. Alloys welding. Design of welded joints. Welding symbols. Welding consumables. Classification, characteristics and designation of covered electrodes. Electrodes selection. Filler rods, fluxes, shielding gases and backing bars. Energy consumption. Productivity indices. Quality of welds. Welds imperfections. Inspections of welds. Welding procedures.

¬.

	🖄 lectures	l individual assignment
15 Teaching	seminars and workshops	multimedia and network
1.5. Teuching	🔀 exercises	🔀 laboratories
methous	Iong distance education	🗌 mentorship
	🔀 fieldwork	Other

1.6. Comments

1.7. Student's obligations

Course attendance, active participation in the course, attendance at laboratory exercises and on-site training, independent learning.

1.8. Evaluation of student's work

Course attendance	2	Activity/Participation		Seminar paper	Experimental work	
Written exam	0.5	Oral exam		Essay	Research	
Project		Sustained knowledge	2	Report	Practice	

	check									
Portfolio	On-site training	0.5								
1.9. Procedur	e and examples of learning outco	me ass	essment i	in class and at the j	final exam					
Sustained kno	wledge check and final written ex	kam.								
1.10. A.	1.10. Assigned reading (at the time of the submission of study programme proposal)									
1.11. O	ptional / additional reading (at th	e time	of propos	sing study program	me)					
Meden, G., i dr.: C Sinnes K.: Welding O'Brien, A : Weldi	Dsnove zavarivanja, Sveučilište u F g Handbook, Vol. 1, Welding Tech ng Handbook, Vol. 2, Welding Pro	Rijeci, T nology,	ehnički fa AWS, Ar	akultet, Rijeka, 200 nerican Welding So jami, 2013	0. ociety, 2018					
1.12. N attending	umber of assigned reading cop g the course	oies wit	h regard	to the number	r of students сı	irrently				
	Title			Number of copie	s Number studen	^r of ts				
1.13. Q compete	uality monitoring methods whic nces	h ensu	re acqu	irement of output	t knowledge, ski	ills and				
Through the Instit	ution's quality assurance system.									