

CURRICULUM GRADUATE UNIVERSITY STUDY OF MECHANICAL ENGINEERING

Rijeka, April 2021

1. CURRICULUM DESCRIPTION

1.1. The list of compulsory and elective courses with the number of active classes required for their performance and ECTS credits

Hours / weekECTSMathematics for Engineers Strength of Materials II Thermodynamics II32ITdTL+TECTSSubjects from elective group Mechanical Engineering Design and Mechatronics: Components Engineering Visualization32157Subjects from elective group Computational Mechanics and Engineering: Vibrations Modelling in Engineering2112355Subjects from elective group Computational Mechanics and Engineering: Wibrations Modelling in Engineering2112444Subjects from elective group Computational Mechanics and Engineering: Wibrations Modelling in Engineering211445Subjects from elective group Industrial and Manufacturing Engineering: Machning Processes Joining of Materials21145Subjects from elective group Thermal Engineering: Laboratory Practice in Thermal Engineering2244Subjects from elective group Process and Energy Engineering: Laboratory Practice in Thermal Engineering2244Subjects from elective group Marine Engineering: Laboratory Practice in Thermal Engineering2134Subjects from elective group Marine Engineering: Laboratory Practice in Thermal Engineering2134Subjects from elective group Marine Engineering: Laboratory Practice in Thermal Engineering2134Subjects from elective group Marine Engineering:		1. semester						
LaTITdTL+TMathematics for Engineers Strength of Materials II3257Subjects from elective group Mechanical Engineering Design and Mechatronics: Mechanical Design of Machine Components2355Subjects from elective group Mechanical Engineering Disualization12355Engineering Visualization123444Subjects from elective group Computational Mechanics and Engineering: Ubrations Joining of Materials21144Subjects from elective group Industrial and Manufacturing Engineering: Joining of Materials21145Subjects from elective group Thermal Engineering: Laboratory Practice in Thermal Engineering22444Subjects from elective group Process and Energy Engineering: Joining of Materials22444Subjects from elective group Thermal Engineering: Laboratory Practice in Thermal Engineering22444Subjects from elective group Marine Engineering: Laboratory Practice in Thermal Engineering22444Subjects from elective group Marine Engineering: Laboratory Practice in Thermal Engineering12355Subjects from elective group Marine Engineering: Laboratory Practice in Thermal Engineering12355Subjects from elective group Marine Engineering: Laboratory Practice in Thermal Engineering <td< th=""><th></th><th>Cubic et title</th><th></th><th>Но</th><th>urs / w</th><th>eek</th><th></th><th>ГОТО</th></td<>		Cubic et title		Но	urs / w	eek		ГОТО
Strength of Materials II31157Subjects from elective group Mechanical Engineering Design and Mechatronics:Mechanical Design of Machine Components2355Subjects from elective group Computational Mechanics and Engineering:21144Subjects from elective group Computational Mechanics and Engineering:21144Subjects from elective group Computational Mechanics and Engineering:21144Modelling in Engineering21145Subjects from elective group Industrial and Manufacturing Engineering:Machining Processes21145Subjects from elective group Thermal Engineering:221144Subjects from elective group Thermal Engineering:22144Subjects from elective group Process and Energy Engineering:2244Laboratory Practice in Thermal Engineering2244Laboratory Practice in Thermal Engineering2235Subjects from elective group Marine Engineering:22134Marine Electrical Engineering2134Laboratory Practice in Thermal Engineering2134Subjects from elective group Marine Engineering:2134Subjects from elective group Marine Engineering:2134 <t< th=""><th></th><th>Subject title</th><th>L</th><th>aT</th><th>IT</th><th>dT</th><th>L+T</th><th>ECIS</th></t<>		Subject title	L	aT	IT	dT	L+T	ECIS
Thermodynamics II3257Subjects from elective group Mechanical Engineering Design and Mechatronics:Mechanical Design of Machine Components Engineering Visualization2355Subjects from elective group Computational Mechanics and Engineering:21144Subjects from elective group Computational Mechanics and Engineering:21144Modelling in Engineering21145Subjects from elective group Industrial and Manufacturing Engineering:Machining Processes21145Subjects from elective group Thermal Engineering:Machining Processes21144Subjects from elective group Thermal Engineering:1235Subjects from elective group Thermal Engineering:2244Laboratory Practice in Thermal Engineering1235Subjects from elective group Process and Energy Engineering:44Laboratory Practice in Thermal Engineering1235Subjects from elective group Marine Electrical Engineering2134Laboratory Practice in Thermal Engineering2134Laboratory Practice in Thermal Engineering2134Subjects from elective group Marine Electrical Engineering2134Laboratory Practice in Thermal Engineering123		Mathematics for Engineers	-	2			-	7
Subjects from elective group Mechanical Engineering Design and Mechatronics:Mechanical Design of Machine Components Engineering Visualization2355Subjects from elective group Computational Mechanics and Engineering: Vibrations Modelling in Engineering211234Subjects from elective group Industrial and Manufacturing Engineering: Machining Processes Joining of Materials211445Subjects from elective group Industrial and Manufacturing Engineering: Machining Processes Joining of Materials211445Subjects from elective group Thermal Engineering: Heat Exchangers Laboratory Practice in Thermal Engineering22444Subjects from elective group Process and Energy Engineering: Heat Exchangers Laboratory Practice in Thermal Engineering22444Subjects from elective group Marine Engineering: Heat Exchangers Laboratory Practice in Thermal Engineering22444Subjects from elective group Marine Engineering: Laboratory Practice in Thermal Engineering12355Subjects from elective group Marine Engineering: Laboratory Practice in Thermal Engineering21344Subjects from elective group Marine Engineering: Laboratory Practice in Thermal Engineering2134Subjects from elective group Marine Engineering: Laboratory Practice in Thermal Engineering34Marine		Strength of Materials II		1	1			7
Mechanical Design of Machine Components Engineering Visualization21355Subjects from elective group Computational Mechanics and Engineering: Vibrations Modelling in Engineering21144Subjects from elective group Industrial and Manufacturing Engineering: Joining of Materials21144Subjects from elective group Industrial and Manufacturing Engineering:445Subjects from elective group Industrial and Manufacturing Engineering:445Subjects from elective group Thermal Engineering:21145Subjects from elective group Thermal Engineering:221144Machining Processes221144Subjects from elective group Thermal Engineering:22144Laboratory Practice in Thermal Engineering2235Subjects from elective group Marine Engineering:2235Subjects from elective group Marine Engineering:2235Subjects from elective group Marine Engineering21234Laboratory Practice in Thermal Engineering12335Subjects from elective group Marine Engineering213434Laboratory Practice in Thermal Engineering12335Subjects from elective group Marine Engineering21			-	-			5	7
Components Engineering Visualization2355Subjects from elective group Computational Mechanics and Engineering:Vibrations Modelling in Engineering21144Modelling in Engineering21144Subjects from elective group Industrial and Manufacturing Engineering:21145Subjects from elective group Industrial and Manufacturing Engineering:345Subjects from elective group Thermal Engineering:144Subjects from elective group Thermal Engineering:44Heat Exchangers Laboratory Practice in Thermal Engineering2244Laboratory Practice in Thermal Engineering1235Subjects from elective group Marine Engineering:444Laboratory Practice in Thermal Engineering1235Subjects from elective group Marine Engineering:344Laboratory Practice in Thermal Engineering1235Subjects from elective group Marine Engineering:3434Laboratory Practice in Thermal Engineering2134Subjects from elective group Marine Engineering Laboratory Practice in Thermal Engineering2134Laboratory Practice in Thermal Engineering2134Laboratory Practice in Thermal Engineering2135Subj	Subjects from elective gr	oup Mechanical Engineering Des	ign an	d Mech	atronio	cs:		
Components Engineering Visualization1234Subjects from elective group Computational Mechanics and Engineering:11234Vibrations Modelling in Engineering211444Modelling in Engineering211445Subjects from elective group Industrial and Manufacturing Engineering:1145Subjects from elective group Industrials21145Joining of Materials21144Subjects from elective group Thermal Engineering:1234Subjects from elective group Process and Energy Engineering:44Laboratory Practice in Thermal Engineering1235Subjects from elective group Process and Energy Engineering:44Marine Electrica Engineering:2244Laboratory Practice in Thermal Engineering1235Subjects from elective group Marine Engineering:344Laboratory Practice in Thermal Engineering2134Laboratory Practice in Thermal Engineering2134Subjects from elective group Marine Engineering:3435Subjects from elective group Marine Engineering:2134Marine Electrical Engineering Engineering2135Subjects from elective group Materi		Mechanical Design of Machine	0			0	F	F
Subjects from elective group Computational Mechanics and Engineering:Vibrations21144Modelling in Engineering211245Subjects from elective group Industrial and Manufacturing Engineering:Machining Processes21145Joining of Materials21144Subjects from elective group Thermal Engineering:Heat Exchangers22244Laboratory Practice in Thermal1235Subjects from elective group Process and Energy Engineering:Heat Exchangers2244Laboratory Practice in Thermal1235Subjects from elective group Marine Engineering2134Laboratory Practice in Thermal1235Subjects from elective group Materials Engineering:3444Laboratory Practice in Thermal1235 <tr <tr="">Marine Electrical E</tr>		Components	2			3	5	Э
Vibrations Modelling in Engineering21144Modelling in Engineering211245Subjects from elective group Industrial and Manufacturing Engineering:21145Joining of Materials211145Subjects from elective group Thermal Engineering:221144Subjects from elective group Thermal Engineering:221144Laboratory Practice in Thermal Engineering22235Subjects from elective group Process and Energy Engineering:44Laboratory Practice in Thermal Engineering1235Subjects from elective group Marine Engineering:22134Marine Electrical Engineering Laboratory Practice in Thermal Engineering2134Subjects from elective group Marine Engineering Laboratory Practice in Thermal Engineering2133Subjects from elective group Marine Engineering Laboratory Practice in Thermal Engineering12335Subjects from elective group Materials Engineering:34344Laboratory Practice in Thermal Engineering12335Subjects from elective group Materials Engineering:21344Laboratory Practice in Thermal Engineering1235<		Engineering Visualization	1			2	3	4
Vibrations Modelling in Engineering21144Modelling in Engineering211245Subjects from elective group Industrial and Manufacturing Engineering:21145Joining of Materials211145Subjects from elective group Thermal Engineering:221144Subjects from elective group Thermal Engineering:221144Laboratory Practice in Thermal Engineering22235Subjects from elective group Process and Energy Engineering:44Laboratory Practice in Thermal Engineering1235Subjects from elective group Marine Engineering:22134Marine Electrical Engineering Laboratory Practice in Thermal Engineering2134Subjects from elective group Marine Engineering Laboratory Practice in Thermal Engineering2133Subjects from elective group Marine Engineering Laboratory Practice in Thermal Engineering12335Subjects from elective group Materials Engineering:34344Laboratory Practice in Thermal Engineering12335Subjects from elective group Materials Engineering:21344Laboratory Practice in Thermal Engineering1235<	Subjects from elective gr	oup Computational Mechanics ar	nd Eng	ineerin	g:			
Subjects from elective group Industrial and Manufacturing Engineering:Machining Processes21145Joining of Materials21134Subjects from elective group Thermal Engineering:22145Heat Exchangers2244Laboratory Practice in Thermal1235Subjects from elective group Process and Energy Engineering:444Laboratory Practice in Thermal1235Subjects from elective group Process and Energy Engineering:2244Laboratory Practice in Thermal1235Subjects from elective group Marine Engineering:22134Laboratory Practice in Thermal1235Subjects from elective group Marine Engineering:2134Laboratory Practice in Thermal1235Subjects from elective group Marine Engineering2134Laboratory Practice in Thermal1235Subjects from elective group Materials Engineering:344Laboratory Practice in Thermal1235Subjects from elective group Materials Engineering:4444Laboratory Practice in Thermal1235Subjects from elective group Materials Engineering:4444 <td></td> <td>Vibrations</td> <td>2</td> <td>1</td> <td>1</td> <td></td> <td>4</td> <td>4</td>		Vibrations	2	1	1		4	4
Machining Processes Joining of Materials21145Subjects from elective group Thermal Engineering: Heat Exchangers Engineering221134Subjects from elective group Process and Energy Engineering: Heat Exchangers Engineering2244Subjects from elective group Process and Energy Engineering: Heat Exchangers Engineering2244Subjects from elective group Process and Energy Engineering: Engineering2244Laboratory Practice in Thermal Engineering1235Subjects from elective group Marine Engineering: Engineering2134Marine Electrical Engineering Engineering2134Laboratory Practice in Thermal Engineering1235Subjects from elective group Marine Engineering Engineering2134Marine Electrical Engineering Engineering2134Subjects from elective group Materials Engineering: Metal Materials2245		Modelling in Engineering	2			2	4	5
Joining of Materials2134Subjects from elective group Thermal Engineering:22244Laboratory Practice in Thermal Engineering1235Subjects from elective group Process and Energy Engineering:22244Laboratory Practice in Thermal Engineering2244Subjects from elective group Process and Energy Engineering:44Laboratory Practice in Thermal Engineering1235Subjects from elective group Marine Engineering:2134Laboratory Practice in Thermal Engineering2134Subjects from elective group Marine Engineering2134Laboratory Practice in Thermal Engineering1235Subjects from elective group Materials Engineering:344Metal Materials2245	Subjects from elective gr	oup Industrial and Manufacturing	j Engin	eering				
Subjects from elective group Thermal Engineering:Heat Exchangers Laboratory Practice in Thermal Engineering2244Subjects from elective group Process and Energy Engineering:1235Subjects from elective group Process and Energy Engineering: Heat Exchangers Engineering2244Subjects from elective group Process and Energy Engineering: Heat Exchangers Engineering2244Subjects from elective group Marine Engineering: Engineering1235Subjects from elective group Marine Engineering Engineering2134Subjects from elective group Marine Engineering Engineering2134Marine Electrical Engineering Engineering2135Subjects from elective group Materials Engineering: Metal Materials2245		Machining Processes	2	1	1		4	5
Heat Exchangers Laboratory Practice in Thermal Engineering2244Subjects from elective group Process and Energy Engineering:22235Subjects from elective group Process and Energy Engineering:22244Laboratory Practice in Thermal Engineering12235Subjects from elective group Marine Engineering:21234Subjects from elective group Marine Engineering2134Laboratory Practice in Thermal Engineering1235Subjects from elective group Marine Engineering Engineering2134Marine Electrical Engineering Engineering2245Subjects from elective group Materials Engineering:4444Metal Materials2245		Joining of Materials	2		1		3	4
Heat Exchangers Laboratory Practice in Thermal Engineering2244Subjects from elective group Process and Energy Engineering:22235Subjects from elective group Process and Energy Engineering:22244Laboratory Practice in Thermal Engineering12235Subjects from elective group Marine Engineering:21234Subjects from elective group Marine Engineering2134Laboratory Practice in Thermal Engineering1235Subjects from elective group Marine Engineering Engineering2134Marine Electrical Engineering Engineering2245Subjects from elective group Materials Engineering:4444Metal Materials2245	Subjects from elective gr	oup Thermal Engineering:						
Laboratory Practice in Thermal Engineering1235Subjects from elective group Process and Energy Engineering:44Heat Exchangers Laboratory Practice in Thermal Engineering2244Subjects from elective group Marine Engineering:1235Subjects from elective group Marine Engineering Laboratory Practice in Thermal Engineering2134Subjects from elective group Marine Engineering Laboratory Practice in Thermal Engineering2134Subjects from elective group Materials Engineering Engineering22135Metal Materials2245		Heat Exchangers	2	2			4	4
Subjects from elective group Process and Energy Engineering:22244Heat Exchangers2244Laboratory Practice in Thermal Engineering1235Subjects from elective group Marine Engineering:2134Laboratory Practice in Thermal Engineering2134Subjects from elective group Marine Engineering Engineering2134Laboratory Practice in Thermal Engineering1235Subjects from elective group Materials Engineering:2245			1		0		2	F
Heat Exchangers Laboratory Practice in Thermal Engineering22244Subjects from elective group Marine Engineering Laboratory Practice in Thermal Engineering21235Subjects from elective group Marine Electrical Engineering Engineering2134Laboratory Practice in Thermal Engineering1235Subjects from elective group Materials Engineering: Metal Materials2245		Engineering	I		2		3	Э
Heat Exchangers Laboratory Practice in Thermal Engineering22244Subjects from elective group Marine Engineering Laboratory Practice in Thermal Engineering21235Subjects from elective group Marine Electrical Engineering Engineering2134Laboratory Practice in Thermal Engineering1235Subjects from elective group Materials Engineering: Metal Materials2245	Subjects from elective gr	oup Process and Energy Enginee	ering:					
Engineering1235Subjects from elective group Marine Engineering:1234Marine Electrical Engineering2134Laboratory Practice in Thermal Engineering1235Subjects from elective group Materials Engineering:2245				2			4	4
Engineering1235Subjects from elective group Marine Engineering:1234Marine Electrical Engineering2134Laboratory Practice in Thermal Engineering1235Subjects from elective group Materials Engineering:2245		Laboratory Practice in Thermal	4		0		2	-
Marine Electrical Engineering Laboratory Practice in Thermal Engineering21341235Subjects from elective group Materials Engineering:224Metal Materials2245		Engineering	I		2		3	Э
Marine Electrical Engineering Laboratory Practice in Thermal Engineering21341235Subjects from elective group Materials Engineering:224Metal Materials2245	Subjects from elective gr	oup Marine Engineering:						
Laboratory Practice in Thermal Engineering1235Subjects from elective group Materials Engineering:Metal Materials2245			2	1			3	4
Engineering I Z 3 5 Subjects from elective group Materials Engineering: Metal Materials 2 2 4 5					_		2	_
Subjects from elective group Materials Engineering: Metal Materials 2 2 4 5			T T		Z		3	5
Metal Materials 2 2 4 5	Subjects from elective gr							
Non Metal Metariala 2 1 2 4		Metal Materials	2	2			4	5
		Non-Metal Materials	2	1			3	4
TOTAL 23 30		TOTAL					23	30

L - lectures, aT – auditory tutorials, IT – laboratory tutorials, dT – design tutorials.

	2. semester						
	0.11.11.11		Но	urs / w	eek		БОТО
	Subject title	L	aT	IT	dT	L+T	ECTS
	Project I ¹				2	2	5
	Elective Subject I						5
	Free Elective Subject I ²						5
	Professional Practice II						5
Subjects from elective gr	oup Mechanical Engineering Des	ign and	d Mech	atronio	cs:		
	Systematic Engineering Design and Product Development	2			2	4	5
	Power Transmissions	3		1	2	6	5
Subjects from elective gr	oup Computational Mechanics ar	nd Engi	ineerin	g:			
	Finite Element Analysis of Solids	2		2		4	5
	luid Dynamics 2			2		4	5
Subjects from elective gr	oup Industrial and Manufacturing	Engin	eering				
	Forming Technology	2		2		4	5
	Production Management	2	1	1		4	5
Subjects from elective gr	oup Thermal Engineering:						
	Energy and Process Devices	3	2			5	5
	Numerical Modelling in	2		2		4	5
	Thermodynamics			2		4	5
Subjects from elective gr	oup Process and Energy Enginee	ering:	_		-		
	Energy and Process Devices	3	2			5	5
	Heat Turbines	3	2			5	5
Subjects from elective gr							
	Ship Systems	3		1		4	5
	Heat Turbines	3	2			5	5
Subjects from elective gr	oup Materials Engineering:						
	Casting	2	1			3	5
	Materials Protection	2	1	1		4	5
	TOTAL					20	30

¹ Enroll one subject.

² Enroll one subject in the 2nd semester from other elective groups or from other graduate studies at the Faculty of Engineering University of Rijeka, worth 5 ECTS or more.

Subjects from which can be enrolled Project I according to the elective groups:

Mechanical Engineering Design and Mechatronics: Engineering Visualization, Mechanical Design of Machine Components, Power Transmissions, Robot Elements Design, Systematic Engineering Design and Product Development, Components of Mechatronics Systems

Computational Mechanics and Engineering: Modelling in Engineering, Vibrations

Industrial and Manufacturing Engineering: Forming Technology, Production Management, Materials Protection Thermal Engineering: Compressors, Energy and Process Devices, Heat Turbines, Numerical Modelling in

Thermodynamics

Process and Energy Engineering: Compressors, Energy and Process Devices, Heat Turbines, Numerical Modelling in Thermodynamics

Marine Engineering: Compressors, Numerical Modelling in Thermodynamics, Ship Systems

Materials Engineering: Metal Materials, Materials Protection

	Elective Subject I						
			Но	urs / w	eek		
	Subject title	L	aT	IT	dT	L+T	ECTS
Subjects from elective gr	oup Mechanical Engineering Des	ign and	d Mech	atronic	s:	1	
	Robot Elements Design	2			2	4	5
	Components of Mechatronics Systems	2		2		4	5
Subjects from elective gr	oup Computational Mechanics ar	nd Engi	neerin	g:			
	Theory of Machines and	2		1	1	4	5
	Mechanisms			-	1		
	Thermomechanics	2		2		4	5
	Visualization and Preparation of Computer Simulations	2			2	4	5
	Numerical Modelling in	2		2		4	5
	Thermodynamics						Ľ
Subjects from elective gr	oup Industrial and Manufacturing		4				-
	Materials Protection	2	1	1		4	5
	Casting	2	1			3	5
Subjects from elective ar	Maintenance oup Thermal Engineering:	2	1			3	5
Subjects nom elective gr	Compressors	2	1			3	5
	Heat Turbines	3	2			5	5
Subjects from elective ar	oup Process and Energy Enginee	•					
jour jour g	Numerical Modelling in						_
	Thermodynamics	2		2		4	5
	Compressors	2	1			3	5
Subjects from elective gr						•	
	Numerical Modelling in Thermodynamics	2		2		4	5
	Compressors	2	1			3	5
	Power Transmissions	3	1		2	6	5
	Offshore Structures and Vessels	2	2		-	4	5
Subjects from elective group Materials Engineering:							
, , , , , , , , , , , , , , , , , , , ,	Production Management	2	1	1		4	5
	Systematic Engineering Design	2			2	4	5
	and Product Development	Z			2	4	5
	Numerical Modelling in	2		2		4	5
	Thermodynamics	2		2		-	5
	Offshore Structures and Vessels	2	2			4	5

	3. semester						
			Hours / week				
	Subject title	L	aT	IT	dT	L+T	ECTS
	Project II ³				2	2	5
Subjects from cleative as	Free Elective Subject II ⁴	ion on	d Maah	otropia			5
Subjects from elective gr	roup Mechanical Engineering Des Precision Engineering and	ign an	a wech	atronic	55:		1
	Microsystems Technologies	3	2			5	6
	Elements of Transport Technic	3			2	5	4
	Elective Subject II	5			2	5	5
	Elective Subject III						5
Subjects from elective an	roup Computational Mechanics ar	nd Ena	ineerin	a:			Ū
	Mechanics of Composites	2		2		4	5
	Engineering Optimization	2			2	4	5
	Elective Subject II						5
	Elective Subject III						5
Subjects from elective gr	roup Industrial and Manufacturing	, Engin	eering	:			
	Designing the Production	2	1		1	4	5
	Systems				I	4	-
	Processes Planning	2	1	1		4	5
	Quality Management and	2	2			4	5
	Metrology	-					-
	Elective Subject II						5
Subjects from elective gr	roup Thermal Engineering:			1	1	-	-
	Thermodynamics of Mixtures	3	2			5	5
	Air Conditioning and Automation	3	1			4	5
	Systems	3	2			5	5
	Refrigeration Elective Subject II	3	2			5	5 5
Subjects from elective a	roup Process and Energy Enginee	rina					5
Subjects nom elective gi	Thermodynamics of Mixtures	3	2			5	5
	Internal Combustion Engines	3	1	1		5	5
	Thermal Power Plants	3		'		4	5
	Elective Subject II	Ŭ	'				5
Subjects from elective an	roup Marine Engineering:	1	1	1	1	1	
j.	Internal Combustion Engines	3	1	1		5	5
	Marine HVAC&R systems	3	2			5	5
	Marine Energy Devices	3	1			4	5
	Elective Subject II						5
Subjects from elective gr	roup Materials Engineering:	-	-	-			
	Non Conventional and Additive	2	2			4	5
	Manufacturing Processes					т	
	Materials Characterization and	2		2		4	5
	Fracture Analysis						-
	Thermal Processes of Materials	2	1	1		4	5
	Elective Subject II						5
	TOTAL					24	30

³Enroll one subject.

⁴ Enroll one subject in the 3rd semester from other elective groups or from other graduate studies at the Faculty of Engineering University of Rijeka, worth 5 ECTS or more. Subjects from which can be enrolled Project II according to the elective groups:

Mechanical Engineering Design and Mechatronics: CAE in Product Design, Elements of Transport Technic, Modelling of Hydraulics and Pneumatics Systems, Precision Engineering and Microsystems Technologies

Computational Mechanics and Engineering: Finite Element Analysis of Solids, Fluid Dynamics, Optimal Control in Engineering, Theory of Machines and Mechanisms

Industrial and Manufacturing Engineering: Designing the Production Systems, Industrial Robotics, Processes Planning

Thermal Engineering: Air Conditioning and Automation Systems, Refrigeration, Renewable Energy Sources, Thermal Power Plants

Process and Energy Engineering: Air Conditioning and Automation Systems, Internal Combustion Engines, Refrigeration, Renewable Energy Sources, Thermal Power Plants

Marine Engineering: Heat Turbines, Internal Combustion Engines, Marine Energy Devices, Marine HVAC&R systems, Renewable Energy Sources

Materials Engineering: Materials Characterization and Fracture Analysis, Thermal Processes of Materials

Elective Subjects								
	Quilitie et ditie		Но	urs / w	eek		ГОТО	
	Subject title	L	aT	IT	dT	L+T	ECTS	
Subjects from elective gr	oup Mechanical Engineering Des	ign and	d Mech	atronic	s:		•	
	Modelling of Hydraulics and Pneumatics Systems	3		1	1	5	5	
	CAE in Product Design	2			2	4	5	
	Control of Mechatronics Systems	2		2		4	5	
Subjects from elective gr	oup Computational Mechanics an	d Engi	ineerin	g:				
	Stability of Structures Control of Dynamic Systems	2 2	1	2	1	4 4	5 5	
	Application of Parallel 2				2	4	5	
	Systems and Data Analysis	2			2	4	5	
	Programming: Scripting Languages	2	2			4	6	
Subjects from elective gr	oup Industrial and Manufacturing	Engin	eering			I		
	Non Conventional and Additive Manufacturing Processes	2	2			4	5	
	Industrial Robotics	2		2		4	5	
	Engineering Logistics	2	2			4	5	
Subjects from elective gr	oup Thermal Engineering:							
	Thermal Power Plants Renewable Energy Sources	3 3	1 2			4 5	5 5	
Subjects from elective gr	oup Process and Energy Enginee	ering:						
	Air Conditioning and Automation Systems	3	1			4	5	
	Renewable Energy Sources		2			5	5	
	Refrigeration	3	2			4	5	
Subjects from elective gr								
	Renewable Energy Sources	3	2			5	5	
	Offshore Operations	2	2			4	5	

Subjects from elective group Materials Engineering:								
Quality Management and Metrology	2	2			4	5		
CAE in Product Design Industrial Robotics	2		2	2	4 4	5 5		

	4. semester						
	Quiltia et title		Но	urs / w	eek		FOTO
	Subject title	L	aT	IT	dT	L+T	ECTS
	Free Elective Subject III ⁵ Graduate Work						5 10
Subjects from elective gr	oup Mechanical Engineering Des		d Mech	atronio	cs:		
	Numerical Methods in Design Elective Subject IV Elective Subject V	2	2			4	5 5 5
Subjects from elective gr	oup Computational Mechanics ar	nd Engi	ineerin	g:			
	Computational Fluid Dynamics Experimental Testing in	2			2	4	5
	Mechanics of Structures and Machines	2		2		4	5
Out is the formula structure of	Elective Subject IV	F					5
Subjects from elective gr	oup Industrial and Manufacturing		eering		4		
	CNC/NC Machine Tools CAD/CAPP/CAM Elective Subject III	2 2		2	1	3 4	5 5 5
Subjects from elective ar	oup Thermal Engineering:						
<u> </u>	Gas Engineering Thermal Measurements Elective Subject III	3 2	1	2		44	5 5 5
Subjects from elective or	oup Process and Energy Enginee	erina:	I	I	I	I	
	Environmental Engineering	2	2			4	5
	Process Plants Equipment Elective Subject III	2	2			4	5 5
Subjects from elective gr	oup Marine Engineering:						
	Ship Propulsion Devices Marine Deck Machinery Elective Subject III	2 2	1		1 2	44	5 5 5
Subjects from elective gr	oup Materials Engineering:						
	Polymer Processing	2			1	3	5
	Mechanical Behaviour and Selection of Materials	2	1	1		4	5
	Elective Subject III						5
	TOTAL					16	30

⁵ Enroll one subject in the 4th semester from other elective groups or from other graduate studies at the Faculty of Engineering University of Rijeka, worth 5 ECTS or more.

	Elective Subjects						
			Но	urs / w	eek		
	Subject title	L	aT	IT	dT	L+T	ECTS
Subjects from elective gr	oup Mechanical Engineering Des	ign and	d Mech	atronio	cs:		
	Transport Systems	2			2	4	5
	Laboratory Excercises A	1		2		3	5
	Micro- and						
	Nanoelectromechanical	2	1			3	5
	Systems						
	Laboratory Exercises B	1		2		3	5
	Mechanical Behaviour and	2	1	1		4	5
	Selection of Materials		-	-			
Subjects from elective gr	oup Computational Mechanics ar	nd Engi	ineerin	g:	T	r	1
	Durability of Machines and	2		1	1	4	5
	Structures		_				-
	Dynamics of Offshore Structures	2	2			4	5
	Numerical Modelling of	2			2	4	5
	Hydraulic Machines						
	Programming of Engineering Applications	2			2	4	5
Subjects from elective ar	roup Industrial and Manufacturing	Engin	ooring				
Subjects nom elective gr	Application of Artificial		cerniy	•			
	Intelligence	2		1		3	5
	Project management	2	1			3	5
	Computer Integrated					-	-
	Manufacturing	2		1		3	5
	Computer Simulation of						_
	Production Processes	2		1		3	5
Subjects from elective gr	oup Thermal Engineering:				I		
	Fuels, Lubricants and Water	2	2			4	5
	Environmental Engineering	2	2			4	5
	Computational Modeling of Hvac	2	2			4	5
	& Thermal Power Systems	_	Z			4	5
Subjects from elective gr	oup Process and Energy Enginee	ering:					
	Fuels, Lubricants and Water	2	2			4	5
	Gas Engineering	3	1			4	5
	Thermal Measurements	2		2		4	5
	Computational Modeling of Hvac	2	2			4	5
	& Thermal Power Systems	-					Ŭ
Subjects from elective gr				1	1	<u> </u>	
	Fuels, Lubricants and Water	2	2			4	5
	Gas Engineering	3	1			4	5
	Environmental Engineering	2	2			4	5
	Ship Outfitting and Repair	3			1	4	5
Subjects from elective gr	oup Materials Engineering:	0			1	4	- r
	Thermal Measurements	2		2	4	4	5
	Ship Outfitting and Repair	3 2	2		1	4	5 5
	Numerical Methods in Design	Ζ	Ζ			4	Э

GRADUATE UNIVERSITY STUDY OF	Hours	ECTS
MECHANICAL ENGINEERING TOTAL	83	120

	Basic description							
Course title	le Air Conditioning and Automation Systems							
Study programme	Graduate University Study of Mechanical Engineering							
Course status	optional							
Year	2.							
ECTS credits and	ECTS student 's workload coefficient	5						
teaching	Number of hours (L+E+S)	45+15+0						

1.1. Course objectives

Within the course students acquire theoretical knowledge and skills that are required to solve practical problems related to the design and use of ventilation and air conditioning systems and building automation systems.

1.2. Course enrolment requirements

None.

1.3. Expected course learning outcomes

Define and describe the psychophysical factors that affect human comfort in enclosed spaces. Analyze the influence and explain the use of climate-meteorological data in building energy balance calculations. Comment the influence of thermal properties of building materials and building characteristics on building energy consumption. Calculate energy demand for building heating and cooling. Compare natural and forced ventilation and air-conditioning systems. Differentiate methods of air distribution. Explain classification and designs of basic elements of ventilation and air-conditioning systems. Define and describe basic elements of automation systems. Define and describe basic elements of automation systems. Define and describe basic types of controllers. Define basic elements and describe the operation of central automatic control and management systems for HVAC installations. Apply acquired knowledge to solve practical problems.

1.4. Course content

Psychophysical factors that affect human comfort in enclosed spaces. Thermal comfort and indoor air quality. Comfort indices. The influence of local climate-meteorological data on design of thermotechnical systems in buildings. Energy performance of buildings. Basics of building physics. Building characteristics. Thermal properties of building materials. Heating and cooling demand calculations. Ventilation requirements. Natural and forced ventilation. Local and central ventilation and air-conditioning systems. Air handling units. Heating and cooling coils. Water and steam humidifiers. Fans. Waste heat recovery systems. Air diffusion devices. Air distribution. Air ducts. Air pressure drop calculations. Sound attenuators. Heat generators and chillers in ventilation and air-conditioning systems. Principles of control systems. Control loop and its elements. Control loop feedback mechanisms. Elements and devices of control systems. Hydronic schemes for heating and air-conditioning control systems. Temperature control, frost protection. Air humidity control. Air pressure control. Outside air flow rate control. Energy efficient control strategies. Summer and winter compensation. Cascade and sequential control. Building automation systems.

5 ,	
🛛 lectures	🔀 individual assignment
seminars and workshops	multimedia and network
🔀 exercises	Iaboratories
Iong distance education	mentorship
fieldwork	other
	 seminars and workshops exercises long distance education

- 1.6. Comments
- 1.7. Student's obligations

Course attendance, activity, homework, studying.

1.8. Evaluation of student's work

Course attendance	2	Activity/Participation		Seminar paper	Experimental work	
Written exam		Oral exam	0.5	Essay	Research	
Project		Sustained knowledge check	2	Report	Practice	
Portfolio		Homework	0.5			

1.9. Procedure and examples of learning outcome assessment in class and at the final exam

Course attendance, activity, homework, continuous knowledge testing (two mid-term exams), written and oral exam.

1.10. Assigned reading (at the time of the submission of study programme proposal)

Bošnjaković, F.: Thermodynamics, Vol. I, II and III (reprint editions of 1978, 1976 and 1986), Graphis d.o.o., Zagreb, 2012. (in Croatian)

Group of authors: Buildings Energy Certification Handbook, UNDP, Zagreb, 2010. (in Croatian) P. Donjerković: Basics and Control of HVAC Systems, Vol. I and II, Alfa Zagreb, 1996. (in Croatian)

1.11. Optional / additional reading (at the time of proposing study programme)

Recknagel, Sprenger, Schramek: Heating and Ventilation Handbook, Springer Verlag, München (in German or in Serbian)

ASHRAE: Handbook of Fundamentals, ASHRAE, Atlanta

ASHRAE: Handbook of HVAC Systems and Equipment, ASHRAE, Atlanta

ASHRAE: Handbook of HVAC Applications, ASHRAE, Atlanta

1.12. Number of assigned reading copies with regard to the number of students currently attending the course

Title	Number of copies	Number of students
Bošnjaković, F.: Thermodynamics, Vol. I, II and III (reprint editions of 1978, 1976 and 1986), Graphis d.o.o., Zagreb, 2012. (in Croatian)	38	19
Group of authors: Buildings Energy Certification Handbook, UNDP, Zagreb, 2010. (in Croatian). (free download from www.energetska- efikasnost.undp.hr/images/stories/prirucnici/prircert.pdf)	unlimited	19
P. Donjerković: Basics and Control of HVAC Systems, Vol. I and II, Alfa Zagreb, 1996. (in Croatian)	3	19
1.13. Quality monitoring methods which ensure acque competences	irement of output k	nowledge, skills and

	Basic description				
Course title	Application of Artificial Intelligence				
Study programme	Graduate University Study of Mechanical Engin	Graduate University Study of Mechanical Engineering			
Course status	optional				
Year	2.				
ECTS credits and	ECTS student 's workload coefficient	5			
teaching	Number of hours (L+E+S)	30+15+0			

1.1. Course objectives

Acquisition of theoretical and practical knowledge on the application of advanced algorithms in complex systems.

1.2. Course enrolment requirements

None.

1.3. Expected course learning outcomes

Define the term artificial intelligence. Analyze the problem-solving methodology. Explain knowledge-based information system. Define and analyze an artificial neural network. Identify and analyze the techniques of evolutionary computation. Define and analyze machine learning algorithms. Identify and analyze the theory of games. Apply artificial intelligence in optimization problems. Analyze systems of learning and visual recognition. Apple autonomous agents with collaborative behavior. Applied game theory in economic systems. Apply artificial intelligence to simulate a social system.

1.4. Course content

Definition of artificial intelligence. A historical overview and a look into the future. Problem solving methodology. Knowledge and reasoning: knowledge-based information system. Unreliability of knowledge and reasoning. Artificial neural networks. Convolutional neural networks. Evolutionary computation: genetic algorithms, fuzzy logic. Particle swarm optimization and artificial bee colony. Support vector method and k-nearest algorithm neighbors. Expert systems. Machine learning: learning from perception, learning in neural and belief networks, learning on mistakes, knowledge in learning. Game theory: complex multi-agent systems, autonomous intelligent agents. Data mining. Application of artificial intelligence, optimization and planning of real problems, learning systems, visual recognition systems, artificial intelligent systems in robotics, autonomous agents with collaborative behavior, game theory in economic systems, application of artificial intelligence algorithms in medicine, language processing and recognition, social simulation. Automated devices. Driven tools.

1.5. Teaching methods	 lectures seminars and workshops exercises long distance education fieldwork 	 individual assignment multimedia and network laboratories mentorship other 			
1.6. Comments					
1.7. Student's obliga	tions				
Attendance, activities in the classroom, homework and self-study.					
1.8. Evaluation of st	udent's work				

Course attendance	1.5	Activity/Participation		Seminar paper	Experimental work	
Written exam	1	Oral exam	1	Essay	Research	
Project	1	Sustained knowledge check		Report	Practice	0.5
Portfolio						

Oral explanation of simulation exercises or project task, continuous knowledge test (two control tasks), written final and oral exam.

1.10. Assigned reading (at the time of the submission of study programme proposal)

Bramer, M., Devedzic, I, Artificial Intelligence application and Innovations, 2004.

Arbir, M.A., The Handbook of Brain Theory and Neural Networks, 2002.

Russell, S.J., Norvig P., Artificial Intelligence: A Modern Approach, 2009.

Understanding Artificial Intelligence (Science Made Accessible), 2002.

George F. Luger. Artificial Intelligence: Structures and Strategies for Complex Problem Solving. Addison-Wesley, 2005

1.11. Optional / additional reading (at the time of proposing study programme)

Ritter, G.X., Wilson, J.N., Handbook of Computer Vision Algorithms in Image Algebra, 1996. Thalmann, N.M., Thalmann, D., Artificial Life and Virtual Reality, 1994. Blay Whitby. Artificial Intelligence. Oneworld Publications, 2003.

1.12. Number of assigned reading copies with regard to the number of students currently attending the course

Title	Number of copies	Number of students
Bramer, M., Devedzic, I, Artificial Intelligence application and Innovations, 2004.		
Arbir, M.A., The Handbook of Brain Theory and Neural Networks, 2002.	1	
Russell, S.J., Norvig P., Artificial Intelligence: A Modern Approach, 2009.	1	
Understanding Artificial Intelligence (Science Made Accessible), 2002.		

1.13. Quality monitoring methods which ensure acquirement of output knowledge, skills and competences

Through a structured quality assurance system of the Faculty.

	Basic description				
Course title	Application of Parallel Computing				
Study programme	Graduate University Study of Mechanical Engin	Graduate University Study of Mechanical Engineering			
Course status	optional				
Year	2.				
ECTS credits and	ECTS student 's workload coefficient	5			
teaching	Number of hours (L+E+S)	30+30+0			

1.1. Course objectives

Obtaining theoretical knowledge and develop skills in parallel computing.

1.2. Course enrolment requirements

Attended course Modelling in Engineering.

1.3. Expected course learning outcomes

Define and describe computer architectures classification by Flynn. Describe clusters, ccNUMA concepts, constellations, cloud and grid concepts, SMP cluster. Describe and analyse network topologies. Analyse and apply the knowledge of the domaing decomposition concepts. Analyse parallel programs and their efficiency. Describe and analyse shared memory and distributed memory programing. Analyse and apply the knowledge of the linear solver parallelisation and algebraic domain decomposition.

1.4. Course content

Introduction to supercomputing. Computer architecture classification by Flynn DM-SIMD, SM-SIMD. Computer architectures SM-MIMD, DM-MIMD. Clusters, ccNUMA, constellations, cloud and grid concepts. SMP cluster. Network topologies. Parallel computing concepts.. Numerical assignment – domain decomposition. Parallel program analysis – efficiency. Parallel program models. Shared memory computers programing concepts. Distributed memory computers programing concepts. Parallel programming assignment – integration. Linear solver parallelisation. Algebraic domain decomposition.

1.5. Teaching methods	 lectures seminars and workshops exercises long distance education fieldwork 	 individual assignment multimedia and network laboratories mentorship
	fieldwork	lother

1.6. Comments

1.7. Student's obligations

Course attendance, activity, studying.

Course attendance	2	Activity/Participation	0.5	Seminar paper	0.5	Experimental work	
Written exam		Oral exam		Essay		Research	
Homework	1	Sustained knowledge check	1	Report		Practice	
Portfolio							

Course attendance, activity, two mid-term seminar presentations.

1.10. Assigned reading (at the time of the submission of study programme proposal)

J. Dongarra, I. Foster, G. Fox , K. Kennedy, A. White, L. Torczon, W. Gropp, The Sourcebook of Parallel Computing, Elsevier Science, San Francisco, CA, 2003

A. Grama, A. Gupta, G. Karpypis, V. Kumar, Introduction to Parallel Computing

G. E. Karniadakis, R. M. Kirby; Parallel Scientific Computing in C++ and MPI, Cambridge University Press, 2003.

1.11. Optional / additional reading (at the time of proposing study programme)

P.S. Pacheco, Parallel Programming with MPI

B. Chapman, G. Jost, R. Van der Pas, Using OpenMP

1.12. Number of assigned reading copies with regard to the number of students currently attending the course

Title	Number of copies	Number of students	
J. Dongarra, I. Foster, G. Fox , K. Kennedy, A. White, L. Torczon, W. Gropp, The Sourcebook of Parallel Computing, Elsevier Science, San Francisco, CA, 2003	1	10	
A. Grama, A. Gupta, G. Karpypis, V. Kumar, Introduction to Parallel Computing	1	10	
G. E. Karniadakis, R. M. Kirby; Parallel Scientific Computing in C++ and MPI, Cambridge University Press, 2003.	1	10	

1.13. Quality monitoring methods which ensure acquirement of output knowledge, skills and competences

	Basic description				
Course title	CAD/CAPP/CAM				
Study programme	Graduate University Study of Mechanical Engi	Graduate University Study of Mechanical Engineering			
Course status	optional				
Year	2.				
ECTS credits and	ECTS student 's workload coefficient	5			
teaching	Number of hours (L+E+S)	30+30+0			

1.1. Course objectives

Acquisition of specialized knowledge and skills in the project design, reconstruction and production of complex parts based on the use of computers with the intensive application of CAD / CAM software packages.

1.2. Course enrolment requirements

Completed course Processes planning.

1.3. Expected course learning outcomes

Explain the problems of transferring data from CAD systems in NC programming system. Implement CAM software package in the area of the NC programming with the CAD basics. Critically evaluate the advantages and disadvantages of CAPP techniques (variant and generative approach to the use of computers in the process planning). Specify and analyse different methods and techniques of digitization. Implement the existing software for data conversion of CT/MRI systems to CAD/CAM data and build the model with additive technology processes.

1.4. Course content

Elaborating of hypothesis, solutions and trends in the development of automation technology of preparation of fabrication and assembly of the product, and automation of the control plans. Computer-supported programming numerically controlled machines. Methods and techniques of digitization, transformation of a series of 2D image data into a 3D model. CAD / CAM systems in medical engineering. Conversion of CT and MRI system data into CAD / CAM data and standardization of digital formats. Implementation of CAD/CAM software solutions for reconstruction, design and manufacturing of complex parts. Generating the "tool" path for the processes of additive technologies.

P		
1.5. Teaching methods	 lectures seminars and workshops exercises long distance education fieldwork 	 individual assignment multimedia and network laboratories mentorship other
1.6. Comments		

1.7. Student's obligations

Course attendance, class participation, program assignment, self-learning.

Course attendance	2	Activity/Participation	Seminar pape	er	Experimental work	
Written exam	0.5	Oral exam	Essay		Research	

Project	Sustained knowledge check	1.5	Report	Practice	
Portfolio				Program assignment	1

Attendance and activity on teaching, continuous knowledge check, program assignment and written and/or oral exam.

1.10. Assigned reading (at the time of the submission of study programme proposal)

El Wakil, S.D.: Processes and Design for Manufacturing, Prentice-Hall Inc., Englewood Cliffs, New Jersey, 1989.

Instructions for using the software packages SolidWorks, Mastercam i Geomagic Design X

1.11. Optional / additional reading (at the time of proposing study programme)

Nelson, D.H., Schneider G.: Applied Manufacturing Process Planning, 2002, ISBN: 0831131586.

Besant, B., Lui, C.W.K.: Computer-Aided Design and Manufacture, Ellis Horwood 2007.

Kusiak, A.: Intelligent Manufacturing Systems, Prentice-Hall Inc., Englewood Cliffs, New Jersey, 1990. Groover, M.P.: Automation Production Systems and Computer Integrated Manufacturing, Prentice-Hall Inc., Englewood Cliffs, New Jersey, 1987.

1.12. Number of assigned reading copies with regard to the number of students currently attending the course

Title	Number of copies	Number of students
El Wakil, S.D.: Processes and Design for Manufacturing, Prentice- Hall Inc., Englewood Cliffs, New Jersey, 1989.	1	25
Instructions for using the software packages SolidWorks, Mastercam i Geomagic Design X		25

1.13. Quality monitoring methods which ensure acquirement of output knowledge, skills and competences

Basic description				
Course title	CAE in Product Design	CAE in Product Design		
Study programme	Graduate University Study of Mechanical Engineering			
Course status	optional	optional		
Year	2.			
ECTS credits and	ECTS student 's workload coefficient	5		
teaching	Number of hours (L+E+S)	30+30+0		

1.1. Course objectives

Acquisition and application of advanced knowledge and skills in developing and constructing the elaborate machine elements and assemblies with intensive use of current software tools and applications.

1.2. Course enrolment requirements

None.

1.3. Expected course learning outcomes

Indicate and describe the basic concepts of CAE's and the ways and aspects of its application in product development. Distinguish and describe the ways and means of applying CAE in product development. Describe the current status and trends and directions of development of CAE methods and tools. Define the types of product models and features that it should have given its purpose and stage of product development. Analyze examples of a computational model of the product. Characterize computer modelling of elements and assemblies, and drafting and documentation. Describe the features of functional and numerical analysis of elements and assemblies. Describe methods of communication and information transfer characteristics between the individual CAE systems and applications. Generate a computer model of the product suited for a particular application of CAE and analyze it as part of a project to solve the task.

1.4. Course content

Introduction, basics and advanced concepts of CAE (Computer Aided Engineering). Review of currently implemented of CAE methods and techniques in product design, trends in development of CAE software tools. Product Lifecycle Management (PLM). Implementation of modern methods and software tools in product development and design (concurrent engineering, teamwork, automatization and integration of design process). 3D modelling of product elements and assemblies (requirements and correct techniques). Functional analysis of elements and assemblies (mass, moment of inertia, overlap analysis). Numerical analysis (static, kinematic, dynamic), topology optimization, generative design. Rapid prototyping technology overview, 3D printing, 3D scanning, digital image correlation. Information and data transfer between different CAE applications and packages. Overview of software tools and modules for other CAE applications.

1.5. Teaching methods	 lectures seminars and workshops exercises long distance education fieldwork 	 individual assignment multimedia and network laboratories mentorship other _
1.6. Comments		
1.7. Student's obliga	tions	

Attendance, class participation, studying, program assignments.

1.8. Evaluatio	on of stu	udent's work					
Course attendance	2	Activity/Participation		Seminar paper		Experimental work	
Written exam	1	Oral exam		Essay		Research	
Project		Sustained knowledge check	1	Report		Practice	
Portfolio		Homework		Program assignments	1		

Attendance, continuous assessment (partial exams), program assignments, written / oral examination.

1.10. Assigned reading (at the time of the submission of study programme proposal)

Teaching materials and notes from lectures.

Instructions for the use of Autodesk INVENTOR, Fusion 360, Ansys.

1.11. Optional / additional reading (at the time of proposing study programme)

Adams, V., Askenazi, A.: Building Better Products with Finite Element Analysis, Onword Press, Santa FE, 1999. Lieu, D. K., Sorby, S. A..: Visualization, Modeling, and Graphics for Engineering Design, Delmar Cengage Learning, Clifton Park [etc.], 2009.

1.12. Number of assigned reading copies with regard to the number of students currently attending the course

Title	Number of copies	Number of students
Instructions for the use of Autodesk INVENTOR, Fusion 360, Ansys.		12
1.12 Ouglite magitarian matheda which around		

1.13. Quality monitoring methods which ensure acquirement of output knowledge, skills and competences

Basic description				
Course title	Casting	Casting		
Study programme	Graduate University Study of Mechanical Engineering			
Course status	optional	optional		
Year	1.			
ECTS credits and	ECTS student 's workload coefficient	5		
teaching	Number of hours (L+E+S)	30+15+0		

1.1. Course objectives

Acquiring knowledge of the casting processes and methods for the production of castings. Understanding the process of solidification in the mold. Acquiring knowledge about the principles of construction of castings. Acquiring skills in designing pouring and risering system.

1.2. Course enrolment requirements

No requirements.

1.3. Expected course learning outcomes

Explain and differentiate casting processes and equipment in the production of castings. Describe the process of solidification of alloys in a mold. Define the pouring and risering system. Describe casting properties of alloys. Describe the principles of construction of castings. Define casting defects. Analyze residual stresses in the casting. Define the casting process based on construction and technological requirements.

1.4. Course content

Basic principles of molding. Models. Molding processes and materials. Equipment and machinery in the foundry. Schematic representation of the flow of the technological process in the foundry. Casting processes and methods. Basic aspects and terminology. Solidification of metal. Casting and risering of castings. Melting of metals and alloys. Castability of metals. Casting alloys. Modeling and simulation of solidification of the melt in the mold. Principle constructions of castings. Casting defects. Residual stresses in the casting. Cleaning and inspection of castings. The impact of the foundry on the environment.

1.5. Teaching methods	 lectures seminars and workshops exercises long distance education 	 individual assignment multimedia and network laboratories mentorship
1.6. Comments	fieldwork -	other
1.7. Student's obligat	tions	

Course attendance, preparation of seminar papers, independent learning.

Course attendance	1.5	Activity/Participation		Seminar paper	1.5	Experimental work	
Written exam	1	Oral exam		Essay		Research	
Project		Sustained knowledge	1	Report		Practice	

	check					
Portfolio	Homework					
1.9. Procedure and examples of learning outcome assessment in class and at the final exam						
Course attendance, sustained knowledge check, seminar papers, written exam.						
1.10. A.	ssigned reading (at the time of the	e submission of	study programme	e proposal)		
Katavić, I., Casting, Sveučilište u Rijeci, 1993. (in Croatian) Campbell J., Complete casting handbook : metal casting processes, metallurgy, techniques and design, 2nd ed, Oxford : Elsevier, cop. 2015.						
1.11. O	ptional / additional reading (at the	time of propo	sing study progran	nme)		
Casting manual, Savez Ijevača Hrvatske. (in Croatian) ASM Handbook, Volume 15, Casting, ASM International, Materials Park, OH, 1998.						
1.12. Number of assigned reading copies with regard to the number of students currently attending the course						
Title Number of copies Number of students					-	

nue	Number of copies	students
Katavić, I., Casting, Sveučilište u Rijeci, 1993. (in Croatian)	21	20
Campbell J., Complete casting handbook : metal casting processes, metallurgy, techniques and design, 2nd ed, Oxford : Elsevier, cop. 2015.		20
1.13. Quality monitoring methods which ensure acqu competences	irement of output k	nowledge, skills and

Basic description				
Course title	CNC/NC Machine Tools	CNC/NC Machine Tools		
Study programme	Graduate University Study of Mechanical Engineering			
Course status	optional	optional		
Year	2.			
ECTS credits and	ECTS student 's workload coefficient	5		
teaching	Number of hours (L+E+S)	30+15+0		

1.1. Course objectives

Assuming theoretical and practical knowledge about CNC/NC technology.

1.2. Course enrolment requirements

None.

1.3. Expected course learning outcomes

Describe characteristics of NC/CNC/DNC/AC. Analyse of measuring, drive and tooling systems, then clamping system, storage, transportation of tools and workpiece. Analyse of machine tools structural elements. Compare and describe control systems of NC/CNC. To define and apply virtual simulation of CNC machine tools. Apply PLC programming system and postprocessors. Describe modern manufacturing systems. Analyse of fixtures design.

1.4. Course content

Introduction in NC/CNC technology. NC/CNC/DNC/AC characteristics. Measuring systems and sensors at CNC machine tools. Machine tools structural elements and drive systems (main and feed drives). Tooling systems (tools selection, holders, presetting, driven tools, tool storage, and tool identification systems and tools transportation). Clamping system, workpiece changing and transport. Machining centers (horizontal, vertical). High speed machine tools. Parallel kinematics. Control systems CNC/NC (PLC and SoftPLC). Design of CNC/NC systems. Computer control and machine tool simulation graphics. Theory of making postprocessors. Fixtures.

🛛 fieldwork

1.6. Comments

1.7. Student's obligations

Class attendance and activity, homework and independent learning.

Course attendance	1.5	Activity/Participation		Seminar paper	Experimental work	
Written exam	0.5	Oral exam		Essay	Research	
Project		Sustained knowledge check	2.5	Report	Practice	

Portfolio	Homework	0.5		

Class attendance and activity, homework, continuous knowledge assessment, and written and/or oral examination.

1.10. Assigned reading (at the time of the submission of study programme proposal)

Tadić, B., Vukelić, Đ., Jurković, Z.: *Tools, Jigs and Fixtures*, ISBN: 978-86-6335-000-7, Fakultet inženjerskih nauka u Kragujevcu, Kragujevac, 2013. (in Serbian)

Lopez de Lacalle, L. N. ; Lamikiz, A.: *Machine Tools for High Performance Machining*, ISBN 978-1-84800-379-8, Springer, 2009.

Apro, K.: Secrets of 5-Axis Machining, ISBN-13: 978-0831133757, Industrial Press, 2008.

1.11. Optional / additional reading (at the time of proposing study programme)

Weck, M.: Werkzeugmaschinen Fertigungssysteme, Band 1-5, Springer-Verlag, 1998-2002.

Smid, P.: CNC programming handbook, ISBN-13: 978-0831133474, Industrial Press, 2008.

Kief H. B., Roschiwal, H. A.: CNC Handbook, ISBN-13: 978-0071799485, McGraw-Hill Education, 2012.

Ito, Y.: *Modular Design for Machine Tools*, ISBN-13: 978-0071496605, McGraw-Hill Education, 2008.

Suh, S.-H., Kang, S.-K., Chung, D.-H., Stroud, I.: *Theory and Design of CNC Systems*, ISBN-13: 978-1849967877, Springer, 2010."

1.12. Number of assigned reading copies with regard to the number of students currently attending the course

Title	Number of copies	Number of students
Tadić, B., Vukelić, Đ., Jurković, Z.: <i>Tools, Jigs and Fixtures</i> , ISBN: 978-86-6335-000-7, Fakultet inženjerskih nauka u Kragujevcu, Kragujevac, 2013. (in Serbian)	12	27
Lopez de Lacalle, L. N. ; Lamikiz, A.: <i>Machine Tools for High Performance Machining</i> , ISBN 978-1-84800-379-8, Springer, 2009.	1	27
Apro, K.: <i>Secrets of 5-Axis Machining</i> , ISBN-13: 978-0831133757, Industrial Press, 2008.	1	27

1.13. Quality monitoring methods which ensure acquirement of output knowledge, skills and competences

Basic description					
Course title	Components of Mechatronic Systems	Components of Mechatronic Systems			
Study programme	Graduate University Study of Mechanical Engineering				
Course status	optional				
Year	1.	1.			
ECTS credits and	ECTS student 's workload coefficient 5				
teaching	Number of hours (L+E+S)	Number of hours (L+E+S) 30+30+0			

1.1. Course objectives

Integration of mechanical engineering, electrical engineering and computer sciences. Acquiring of the theoretical knowledge about essential elements of mechatronic systems: actuators, sensors and control hardware & software. Understanding the relationships between different parts of a mechatronic system.

1.2. Course enrolment requirements

None.

1.3. Expected course learning outcomes

Define and explain the idea of mechatronics systems as well as a concept of mechatronics as an interdisciplinary branch. Differentiate components of mechatronic systems. Describe and explain the principles and features of different control hardware and software. Describe working principles and applications of different actuators and sensors. Understand connection between sensors, actuators and control hardware. Gain basic knowledge of LabVIEW programming environment.

1.4. Course content

Definition and concept of mechatronics systems. Control and data acquisition hardware in mechatronics. Power amplifiers. Sensors and their applications. Sensors (proximity, position, speed, acceleration, force, stress, temperature). Actuators and their applications. DC motors. AC motors. Servo motors. Stepper motors. Linear motors. Hydraulic and pneumatic actuators. The basics of the LabVIEW programming environment and its integration with sensors, actuators and data acquisition and control hardware.

1.5. Teaching	Iectures seminars and workshops	individual assignment
nethods	🔀 exercises	🔀 laboratories
methous	Iong distance education	🗌 mentorship
	🗌 fieldwork	Other

1.6. Comments

1.7. Student's obligations

Attendance, class participation, preparation and problem solving, independent learning.

1.8. Evaluation of student's work							
Course attendance	2	Activity/Participation	0.5	Seminar paper		Experimental work	
Written exam	1	Oral exam		Essay		Research	
Project		Sustained knowledge check	1	Report		Practice	

Portfolio	Laboratory exercises	0.5				
1.9. Procedui	re and examples of learning outcon	ne assessment i	in class and at the fina	l exam		
Attendance, program assignments, continuous assessment (partial exams), written and oral exam.						
Attendance, prog	ram assignments, continuous asses	ssment (partial	exams), written and o	rai exam.		
1.10. A	1.10. Assigned reading (at the time of the submission of study programme proposal)					
Teaching materia	Is and notes from lectures.					
1.11. O	Dptional / additional reading (at the	e time of propos	sing study programme)		
Tehnički fakultet S. Zelenika, E. Kar	 S. Zelenika, E. Kamenar: "Precizne konstrukcije i tehnologija mikro i nanosustava I – Precizne konstrukcije", Tehnički fakultet Sveučilišta u Rijeci, 2015. S. Zelenika, E. Kamenar, M. Korda, I. Mezić: "Application of Koopman-Based Control in Ultrahigh-Precision Positioning". In The Koopman Operator in Systems and Control (pp. 451-479). Springer, Cham, 2020. 					
	R. M. Schmidt, G. Schitter, A. Rankers, J van Eijk: "The Design of High Performance Mechatronics" – 2nd ed., Delft University Press, 2014.					
R. H. Bishop: "The	R. H. Bishop: "The Mechatronics Handbook" – 2nd ed., CRC Press, Washington, D. C., 2007.					
R. H. Bishop: "Me	echatronics - an Introduction", Taylo	or and Francis (Group, LLC, 2006.			
	Number of assigned reading coping the course	es with regard	d to the number oj	f students currently		
	Title Number of copies Number of students					
1.13. Quality monitoring methods which ensure acquirement of output knowledge, skills and competences						
Through the Instit	Through the Institution's quality assurance system.					

Basic description					
Course title	Compressors	Compressors			
Study programme	Graduate University Study of Mechanical Engi	Graduate University Study of Mechanical Engineering			
Course status	optional				
Year	1.	1.			
ECTS credits and	ECTS student 's workload coefficient 5				
teaching	Number of hours (L+E+S)	Number of hours (L+E+S) 30+15+0			

1.1. Course objectives

Assuming theoretical knowledge and development of skills for solving of practical problems in application of compressors.

1.2. Course enrolment requirements

None.

1.3. Expected course learning outcomes

To specify classification and thermodynamic fundamentals of compressors. Calculation of parameters and analysis of single stage and multi stage compression processes. Description of design, parts and constructive features of positive displacement and dynamic compressors, calculation of main constructive features. Specification and comparison of capacity controls for different compressor types. Description of compressors application in refrigeration and compressed gas installations. Description of installation, operation and maintenance of compressors.

1.4. Course content

Classification and application of compressors. Thermodynamic fundamentals of compressor operation. Compressor power consumption and efficiency. Reciprocating compressors: construction, design calculations, kinematics and dynamics of a reciprocating mechanism, ideal and actual capacity, valves, capacity control, lubrication. Rolling piston, sliding vane, screw and scroll compressors: constructive features, capacities and control. Turbo compressors: constructive features, performance and control. Ejectors: constructive features and basic design calculations. Installation, operation and maintenance of compressors. Application of compressors in refrigeration and compressed gas installations. A design project can be chosen from subject contents.

🛛 lectures	individual	accignment	
 seminars and worksho exercises long distance education fieldwork 	ops I multimed	lia and network ies	
-			
igations			
ctivity, studying.			
fstudent's work			
5 Activity/Participation	Seminar paper	Experimental	
	 exercises long distance education fieldwork - ligations ctivity, studying. f student's work 	exercises Iaborator long distance education mentorsh fieldwork other - - <i>ligations</i> ctivity, studying. f student's work -	exercises Iaboratories long distance education mentorship fieldwork other Iigations ctivity, studying.

attendance						work	
Written exam	0.5	Oral exam	0.5	Essay		Research	
Project		Sustained knowledge check	2.5	Report		Practice	
Portfolio							
1.9. Procedui	1.9. Procedure and examples of learning outcome assessment in class and at the final exam						
Activity, continuo	us knov	vledge testing (two mid-te	erm exa	ms), writt	ten and oral exam		
1.10. A	ssigned	reading (at the time of th	ne subrr	nission of	study programme	proposal)	
Pavković, B.: Com	pressor	s, (lectures), https://mood	dle.srce	.hr			
1.11. O	1.11. Optional / additional reading (at the time of proposing study programme)						
	Ludwig, E.E.: Applied Process design for Chemical and Petrochemical Plants, Volume I, II and III, (book), Gulf						
Publishing Compa							
-	-	Compressors: A Basic Guid			Well Corp., Tulsa 2	2003.	
	•	ors, (book), FSB, Zagreb 20	-	-			
· · · · ·		hnička enciklopedija Sv. 7,					
1.12. N attendin		of assigned reading cop purse	oles wi	in regard	to the numbe	r of students ci	urrentiy
		Title			Number of copie	es Number studen	-
Pavković, B.: Compressors, (lectures), https://moodle.srce.hr unlimited							
1.13. Quality monitoring methods which ensure acquirement of output knowledge, skills and competences							
Through the Institution's quality assurance system.							

Basic description					
Course title	Computational Fluid Dynamics	Computational Fluid Dynamics			
Study programme	Graduate University Study of Mechanical Engir	Graduate University Study of Mechanical Engineering			
Course status	optional				
Year	2.	2.			
ECTS credits and	ECTS student 's workload coefficient 5				
teaching	Number of hours (L+E+S)	Number of hours (L+E+S) 30+30+0			

1.1. Course objectives

Defining and modelling problems in engineering practice. Application of suitable methods for specific classes of fluid flow. Usage of commercial and open-source software for fluid flow analysis in engineering practice.

1.2. Course enrolment requirements

None.

1.3. Expected course learning outcomes

Description and assessment of mathematical model for given physical problem in fluid mechanics. List and description of

numerical methods in fluid mechanics. Usage and appropriate elaboration of finite volume method for mathematical model

in fluid mechanics problems. Usage and appropriate elaboration of turbulent models for specific classes of fluid flow. Application of software packages for fluid flow simulation of simple problems. Application of high order schemes. Assessment and proper evaluation of simulation results of steady and unsteady fluid flows. Proper evaluation of simulation results of compressible fluid flow. Assessment and proper evaluation of simulation results of steady and proper evaluation of simulation results of free surface flow.

1.4. Course content

Mathematical models of fluid flow. Reynolds averaging. Space-time discretization. Numerical methods. Finite difference method. Finite volume method. Approximation and interpolation. Boundary conditions. Initial conditions. Navier-Stokes equations. Turbulence modelling. Error estimation. Steady flow. Unsteady flow. Compressible flow. Free surface flow.

	🔀 lectures	🔀 individual assignment
1.5. Teaching	seminars and workshops	multimedia and network
<i>methods</i>	🔀 exercises	🗌 laboratories
methous	Iong distance education	🗌 mentorship
	🗌 fieldwork	Other
4.6.6		

1.6. Comments

1.7. Student's obligations

Lectures, exercises, long distance education, individual assignment, consultations.

Course attendance	2	Activity/Participation	Seminar paper	Experimental work	
Written exam	1	Oral exam	Essay	Research	

Project	2	Sustained knowledge check	Report		Pra	ctice		
Portfolio		Homework						
1.9. Procedure and examples of learning outcome assessment in class and at the final exam								
Course attendance, activity, homework, continuous knowledge testing (two mid-term exams), written and oral exam								
1.10. A	ssigned	l reading (at the time of the	e submission of	study program	me pro	posal)		
Zikanov O. (2010) J. D. Anderson. Co	Essent mputa	1999) Computational Methe ial Computational Fluid Dyn tional fluid dynamics : the b II, New York, 1995.	amic, John Wil	ey & Sons Inc.,	ISBN 97	78-0-470-4232		
1.11. O	ptional	/ additional reading (at the	e time of propos	sing study prog	ramme	?)		
-	•	of computational fluid dyna nputation of Internal and Ex		-		-		
1.12. N attending		of assigned reading copi ourse	es with regard	d to the nur	nber oj	f students cu	rrently	
		Title		Number of c	opies	Number student	-	
Ferziger J.H. & Peric M. (1999) Computational Methods for Fluid130Dynamics, Springer, Berlin, Germany.130								
Zikanov O. (2010) Essential Computational Fluid Dynamic, John Wiley & Sons Inc., ISBN 978-0-470-42329-5								
J. D. Anderson. Computational fluid dynamics : the basics with applications McGraw-Hill series in mechanical engineering.130								

1.13. Quality monitoring methods which ensure acquirement of output knowledge, skills and competences

Through the Institution's quality assurance system.

McGraw-Hill, New York, 1995.

Basic description				
Course title	Computational Modeling of HVAC & Thermal Power Systems			
Study programme	Graduate University Study of Mechanical Engineering			
Course status	optional			
Year	2.			
ECTS credits and	ECTS student 's workload coefficient	5		
teaching	Number of hours (L+E+S)	30+30+0		

1.1. Course objectives

Developing skills and competencies for solving technical problems of analysis, synthesis and optimisation of thermal power & HVAC systems in buildings, plants and industry.

1.2. Course enrolment requirements

None.

1.3. Expected course learning outcomes

Indicate and demonstrate the properties of computer programs for simulation of thermal power and HVAC systems. Creating of a test reference year for meteorological data. Creating models of electrical and thermal energy consumers including thermal model of building suitable for calculating of energy properties. Definition and explanation of main operating parameters for thermal power and energy processes in buildings and industry. Explanation of basic process concepts. Creation of models describing thermal, cooling and electricity production systems with distribution and energy consumption models. Calculation of main operating parameters and consumption of useful, delivered and primary energy. Analysis and explanation of factors relevant for the process efficiency. Analysis of economic parameters of the process. Definition and justification of optimization criteria and system optimization.

1.4. Course content

Methods of energy systems modeling. Available computer software. Modelling the test reference year for meteorological data. Thermal model of energy consumption and the building. Influential factors on energy consumption. Modelling of heating, cooling and electricity production equipment (boilers, turbines, motors, heat pumps, chillers, cogeneration units, heat exchangers and storage tanks). Modelling of thermal energy distribution elements (air ducts, pipelines, pumps, fans). Modeling of heating and cooling energy emission (surface heating and cooling, radiators, fan convectors, units for air treatment and distribution). Modelling of the control system. Integration of elements into the system. Calculations of system working parameters, useful, supplied and primary energy. Process optimization by changing operating parameters, set points of control system, component properties or system configuration. Monitoring and analysis of process parameters. Economic analysis of the system.

	🔀 lectures	🔀 individual assignment
	seminars and workshops	multimedia and network
1.5. Teaching methods	🔀 exercises	laboratories
	Iong distance education	🔀 mentorship
	🗌 fieldwork	other
1.6. Comments		

1.7. Student's obligations

Portfolio

Course attendance, activity, studying.

1.8. Evaluation of student's work

Course	2	Activity/Participation		Seminar paper	1	Experimental work	
attendance							
Written exam	0.5	Oral exam	0.5	Essay		Research	
Project		Sustained knowledge check	1	Report		Practice	
	1				-		

1.9. Assessment and evaluation of student's work during classes and on final exam

Activity, continuous knowledge testing (two midterm exams), project, written and oral exam.

1.10. Assigned reading (at the time of the submission of study programme proposal)

Pavković, B., Delač, B.: Numerical modeling of HVAC & thermal power systems (lectures), https://moodle.srce.hr

1.11. Optional / additional reading (at the time of proposing study programme)

ASHRAE: 2017 ASHRAE HANDBOOK- FUNDAMENTALS, (book) ASHRAE Atlanta, 2017.

1.12. Number of assigned reading copies with regard to the number of students currently attending the course

Title	Number of copies	Number of students				
Pavković, B., Delač, B.: Numerical modeling of HVAC & thermal power systems (lectures), https://moodle.srce.hr	unlimited					
1.13. Quality monitoring methods which ensure acquirement of output knowledge, skills and competences						

Through the Institution's system of quality control.

Basic description					
Course title	Computer Integrated Manufacturing	Computer Integrated Manufacturing			
Study programme	Graduate University Study of Mechanical Engineering				
Course status	optional	optional			
Year	2.				
ECTS credits and	ECTS student 's workload coefficient	ECTS student 's workload coefficient 5			
teaching	Number of hours (L+E+S)	Number of hours (L+E+S) 30+15+0			

1.1. Course objectives

Understanding the principles of integration of IT within the concept of Industry 4.0. Understanding computer-aided engineering. Ability to analyze software solutions for business integration and smart factory.

1.2. Course enrolment requirements

None.

1.3. Expected course learning outcomes

Explain the application of IT within the production process. Define the structure and principles of design of integrated information systems. Explain the integral elements of the Industry 4.0 concept. Explain the concept of CAD-CAM systems. Describe the integrated quality control CAQ. Explain the concept of Assembly System 4.0. Explain integrated production planning and control: MRPII, ERP and PLM solutions. Analyze software solutions for automatic control of production. Simulate the activities in the integrated production system/assembly system. Describe flexible manufacturing systems, industrial robots and tool management.

1.4. Course content

Basic notions and definitions. Structure and basic principles for design of integral information system. Integral elements of the Industry 4.0: autonomous robots, computer simulations, system integration, internet of things, cyber security, cloud computing, additive technologies, augmented reality, large data sets. Enterprise organization and information flow. Principles of simultaneous engineering. CAD in production engineering. CAM. Control systems. CAQ. CNC machine tools. Integral production planning and control. MRPII, ERP and PLM software solutions. Characteristics of software for production planning and control. Flexible manufacturing systems. Industrial robots. Tool management. Software solutions for discrete simulations. Trends and future development.

1.5. Teaching methods	 lectures seminars and workshops exercises long distance education fieldwork 	 individual assignment multimedia and network laboratories mentorship other
1.6. Comments		·

1.7. Student's obligations

Attendance, class participation, making the seminar work, independent learning.

Course attendance	1.5	Activity/Participation	Seminar paper	1	Experimental work	
Written exam	1	Oral exam	Essay		Research	1

Project		Sustained knowledge check	0.5	Report			Practice		
Portfolio									
1.9. Procedur	re and ex	kamples of learning outcor	ne asse	essment i	n class and	d at the	e final exam		
Attendance and a	ctivity o	n lessons, project solution	, writte	en and/or	oral exam	۱.			
1.10. A	ssigned	reading (at the time of the	e subm	ission of	study prog	ıramm	e proposal)		
Mikac, T.: Compu	ter Integ	grated Manufacturing, scri	pt on v	veb, Tehn	ički fakult	et Rije	ka, 2004. (in	Croatia	an)
1.11. 0	ptional ,	/ additional reading (at the	e time	of propos	ing study j	orogra	mme)		
Pearson, 2019.		ion, Production Systems, nufacturing Revolution, Joh		·	C		nufacturing,	5th e	dition,
1.12. N attendin		of assigned reading cop urse	ies wit	h regara	to the	numb	er of studer	nts cu	rrently
		Title			Number	of cop	IPC	ımber tudent	-
Mikac, T.: Compo Tehnički fakultet		egrated Manufacturing, s 004. (in Croatian)	cript c	n web,	As ne	eeded		16	
1.13. Q compete		nonitoring methods which	n ensu	re acqu	irement o	f outp	ut knowledg	e, skil	ls and
Through the Instit	tution's	quality assurance system.							

Basic description					
Course title	Computer Simulation of Production Processes	Computer Simulation of Production Processes			
Study programme	Graduate University Study of Mechanical Engineering				
Course status	optional	optional			
Year	2.				
ECTS credits and	ECTS student 's workload coefficient	ECTS student 's workload coefficient 5			
teaching	Number of hours (L+E+S)	Number of hours (L+E+S) 30+15+0			

1.1. Course objectives

The development of theoretical and computer simulation knowledge and their application to concrete examples of production processes with an indication of their optimality. Acquisition of specialized skills of modeling and simulation of production processes with the use of current software packages.

1.2. Course enrolment requirements

Completed course Processes planning.

1.3. Expected course learning outcomes

Explain the theoretical basis of simulation. Identify adequate simulation methods for given engineering formulations of production problems. Describe the discrete event simulation. Apply available simulation software packages to production problems. Plan, model and perform simulation experiments to improve the performance of production systems and production processes. Solve production problems by applying computer simulations. Evaluate the results of computer simulations of production processes.

1.4. Course content

Theoretical basis of simulations. Classification of computer simulation methods. Simulation concept. Methodology for making a simulation model. Discrete event simulation (DES). Modeling and simulations of production systems and production processes using available DES software packages, such as: Tecnomatix Plant Simulation, Arena, etc. Examples of simulation of machining and production processes. Optimization tools. Simulation-optimization approach. Application of genetic algorithms and neural networks in the optimization of production processes and production planning and scheduling. Application of simulation-optimization of simulation.

1.5. Teaching methods lectures
 seminars and workshops
 exercises
 long distance education
 fieldwork

individual assignment
 multimedia and network
 laboratories
 mentorship
 other

1.6. Comments

1.7. Student's obligations

Course attendance, class participation, program assignment, self-learning.

Course attendance	1.5	Activity/Participation		Seminar paper	Experimental work	
Written exam	0.5	Oral exam		Essay	Research	
Project		Sustained knowledge	2	Report	Practice	

	check			
Portfolio	Homework	Laboratory work	Program assignment	1

Attendance and activity on teaching, program assignment, continuous knowledge check and written and/or oral exam.

1.10. Assigned reading (at the time of the submission of study programme proposal)

Carrie, A.: Simulation of Manufacturing Systems, Internationalbooks, 1998.

Pinedo, M.: Scheduling, 5th edition, Springer, 2016.

Instructions for using the software packages Tecnomatix Plant Simulation, Arena

1.11. Optional / additional reading (at the time of proposing study programme)

Banks, J. et al.: Discrete-Event System Simulation, 5th edition, Pearson Education, 2010.

Bangsow, S.: Manufacturing Simulation with Plant Simulation and SimTalk, Springer, 2010.

Bangsow, S.: Tecnomatix Plant Simulation, 2nd edition, Springer, 2020.

Hurrion, R.D.: Simulation: Applications in Manufacturing (International Trends in Manufacturing Technology), Internationalbooks, 1998.

Law, A.M. & Kelton, W.D.: Simulation Modelling and Analysis, 2nd edition, McGraw-Hill, 1991.

Winston, W.L. & Goldberg, J.B.: Operations Research - Applications and Algorithms, 4th edition, Thomson Brooks/Cole, 2004.

Askin, R.G.: Modelling and Analysis of Manufacturing Systems, John Willey and Sons, 1993.

1.12. Number of assigned reading copies with regard to the number of students currently attending the course

Title	Number of copies	Number of students
Carrie, A.: Simulation of Manufacturing Systems, Internationalbooks, 1998.	1	19
Pinedo, M.: Scheduling, 5 th edition, Springer, 2016.	1	19
Instructions for using the software packages Tecnomatix Plant Simulation, Arena		19

1.13. Quality monitoring methods which ensure acquirement of output knowledge, skills and competences

Basic description					
Course title	Control of Dynamic Systems	Control of Dynamic Systems			
Study programme	Graduate University Study of Mechanical Engineering				
Course status	optional				
Year	2.	2.			
ECTS credits and	ECTS student 's workload coefficient 5				
teaching	Number of hours (L+E+S) 30+30+0				

1.1. Course objectives

Obtaining theoretical knowledge of linear system control and the ability to analyze its performance. Solving practical examples of dynamic systems control.

1.2. Course enrolment requirements

None.

1.3. Expected course learning outcomes

For a simple dynamic system determine the transfer function and its step response. Define state space equation for a simple dynamic system. Describe the Hurwitz stability criterion. Analyze system stability based on the poles of a given transfer function. Describe differences between Bode and Nyquist plot and apply them to show given transfer function. Describe PID controller and specify basic methods for its tuning. Analyze response of the PID controller for a given test signal. Analyze feedback control systems in the time and frequency domain by using Matlab.

1.4. .Course content

Classifications of dynamical systems. SISO i MIMO models of dynamic systems. Continuous- and discrete time signals. Continuous state space models. Transfer functions and Laplace transforms. Response of dynamic systems in time domain. Response of dynamic systems in frequency domain. Stability of dynamic systems. PID control. Sensitivity and robustness of control system. Basics of Digital system control. Software tools: MATLAB and Simulink. Practical problem solving: Active suspension control.

	\boxtimes lectures	🔀 individual assignment
1.5. Teaching	seminars and workshops	multimedia and network
5	🔀 exercises	🔀 laboratories
methods	Iong distance education	mentorship mentorship
	🗌 fieldwork	other

1.6. Comments

. . _

1.7. Student's obligations

. .

Course attendance, activity, project reports, studying c

1.8. Evaluation of student's work							
Course attendance	2	Activity/Participation		Seminar paper		Experimental work	
Written exam	1	Oral exam		Essay		Research	
Project		Sustained knowledge check	1	Report		Practice	
Portfolio		Project assignment	1				

Course attendance, activity, project reports, written exam

1.10. Assigned reading (at the time of the submission of study programme proposal)

Novaković, B.: Control systems, Fakultet strojarstva i brodogradnje Sveučilišta u Zagrebu, 1990. (in Croatian) Vukić, Z., Kuljača, Lj.: Automatic control; Linear system analysis, Kigen, Zagreb, 2005. (in Croatian) Moon, F.C.: Applied Dynamics; With application to Multibody and Mechatronic Systems, Wiley VCH Weinheim, 2004.

1.11. Optional / additional reading (at the time of proposing study programme)

Genta, G.: Vibration of Structures and Machines, Springer, third edition, 1999. Gawronski, W.K.: Advanced Structural Dynamics and Active Control of Structures, Springer, New York, 2004.

1.12. Number of assigned reading copies with regard to the number of students currently attending the course

Title	Number of copies	Number of students
Novaković, B.: Control systems, Fakultet strojarstva i brodogradnje Sveučilišta u Zagrebu, 1990. (in Croatian)	1	8
Vukić, Z., Kuljača, Lj.: Automatic control; Linear system analysis, Kigen, Zagreb, 2005. (in Croatian)	2	8
Moon, F.C.: Applied Dynamics; With application to Multibody and Mechatronic Systems, Wiley VCH Weinheim, 2004.	1	8

1.13. Quality monitoring methods which ensure acquirement of output knowledge, skills and competences

Basic description				
Course title	Control of Mechatronics Systems	Control of Mechatronics Systems		
Study programme	Graduate University Study of Mechanical Engineering			
Course status	optional	optional		
Year	2.			
ECTS credits and	ECTS student 's workload coefficient	5		
teaching	Number of hours (L+E+S)	30+30+0		

1.1. Course objectives

Understanding of basic terminology in control of mechatronics systems. Application of control systems to real control problems. Development of student's capabilities to work autonomously in groups - team work. Presentation of achieved results.

1.2. Course enrolment requirements

None.

1.3. Expected course learning outcomes

Explain the role and principles of control in mechatronics. Use Laplace transforms to solve linear differential equations that describe a mechatronics system being analysed. Define a block diagram of the considered system. Determine the transfer function of the system. Describe standard excitation functions. Define stability criteria for controled system. Draw Bode and Nyquist plots for the given transfer function. Describe the basic characteristics of the PID controller. Use Matlab/Simulink software packages for the analysis and solution of problems. Describe control of a mechatronics system by using control hardware and LabVIEW programming environement. Teamwork and written and oral communication with experts in the field. Implementation of the acquired knowledge to solve practical problems.

1.4. Course content

Fundamental principles of control. Dynamic models and responses. Laplace transforms. Basic principles of feedback. Transfer function. Standard excitation functions. Nyquist and Bode methods. Systems stability criteria. Analysis and synthesis of linear continuous control systems in the time and frequency domain. Conventional control via a PID regulator, control with compensation of disturbances and cascade regulation. Examples of control of mechatronics systems by using control hardware and corresponding software interface.

1.5. Teaching methods		 lectures seminars and worksho exercises long distance educatio fieldwork 	pps] individual assig] multimedia and] laboratories] mentorship]other		
1.6. Commen	1.6. Comments -					
1.7. Student's	s obliga	tions				
Course attendanc	Course attendance, activity, project work and autonomous study.					
1.8. Evaluatio	1.8. Evaluation of student's work					
Course attendance	2	Activity/Participation	Seminar pa	aper	xperimental vork	

Written exam		Oral exam	0.5	Essay	Research	
Project	2	Sustained knowledge check	0.5	Report	Practice	
Portfolio						

Active participation to classes and project work. Knowledge review via quizzes and on final exam.

1.10. Assigned reading (at the time of the submission of study programme proposal)

S. Zelenika, E. Kamenar, M. Korda, I. Mezić: "Application of Koopman-Based Control in Ultrahigh-Precision Positioning". In The Koopman Operator in Systems and Control (pp. 451-479). Springer, Cham, 2020.
G. F. Franklin, J. D. Powell, A. Emami-Naeini: Feedback Control of Dynamic Systems - 8th ed., Pearson Higher Education, 2019.

S. Zelenika, E. Kamenar: Precizne konstrukcije i tehnologija mikro- i nanosustava I – Precizne konstrukcije (Precision Engineering and Micro- and Nanosystems Technologies – Precision Engineering), University of Rijeka – Faculty of Engineering, Rijeka (HR), 2015.

1.11. Optional / additional reading (at the time of proposing study programme)

D. Matika, D. Brnobić: Osnove regulacijske tehnike, Tehnički fakultet Rijeka, 2004.

T. Šurina: Automatska regulacija, Školska knjiga, Zagreb, 2001.

V. Kuljača, Z. Vukić: Automatic Control Systems (in Croatian), Školska knjiga., Zagreb, 1985.

D. E. Seborg, T. F. Edgar, D. A. Mellichamp: Process Dynamics and Control, John Wiley & Sons, New York, 1989.

Nise, N.: Control System Engineering. New York; John Wiley & Sons, New York, 2000.

1.12. Number of assigned reading copies with regard to the number of students currently attending the course

attending the course		
Title	Number of copies	Number of students
S. Zelenika, E. Kamenar, M. Korda, I. Mezić: "Application of Koopman-Based Control in Ultrahigh-Precision Positioning". In The Koopman Operator in Systems and Control (pp. 451-479). Springer, Cham, 2020.	1	20
G. F. Franklin, J. D. Powell, A. Emami-Naeini: Feedback Control of Dynamic Systems - 8th ed., Pearson Higher Education, 2019.	1	20
S. Zelenika, E. Kamenar: Precizne konstrukcije i tehnologija mikro- i nanosustava I – Precizne konstrukcije (Precision Engineering and Micro- and Nanosystems Technologies – Precision Engineering), University of Rijeka – Faculty of Engineering, Rijeka (HR), 2015.	5	20

1.13. Quality monitoring methods which ensure acquirement of output knowledge, skills and competences

Via the institutionalised quality assurance system of the Faculty of Engineering. Constant interaction and work with the students with the aim of improving the quality of teaching.

Basic description				
Course title	Designing the Production Systems	Designing the Production Systems		
Study programme	Graduate University Study of Mechanical Engineering			
Course status	optional	optional		
Year	2.			
ECTS credits and	ECTS student 's workload coefficient	5		
teaching	Number of hours (L+E+S)	30+30+0		

1.1. Course objectives

Qualified for the design of production systems. Ability to analyze models of production structures. Understanding the principles of group technology.

1.2. Course enrolment requirements

None.

1.3. Expected course learning outcomes

Define the production system. Describe the characteristics of the production program. Explain the production availability of equipment and manpower. Analyze capacity utilization and system: technical and economic. Distinguish the models the flow of material and processing workflows. Define the correlation coefficient of operations and equipment. Explain the handling and transport of the workpiece, the input, between operations and exit transport. Define the processing cycle: explain the processing time, time of control, transport and waiting. Explain the models of production systems, a single or multi-workpiece lines, serial and flexible systems. Explain the organization of the work flow through the production system. Explain the method of grouping articles. Describe the layout of the plant, equipment and organization of the warehouse. Develop the project of production system: the task, analysis the variables, the concept of the project, plans of processing, optimization solutions, and the choice of the production model (lines, serial or flexible system). Choose of the transportation system.

1.4. Course content

Definition of the production system. Characteristics of the production program. Time availability of equipment and manpower. Capacity and system utilization: technical and economic. Automatization levels. Models flow of material: current, wavy, linear, and flexible. Workflow processing: one-way, two-way. The correlation coefficient of operations and equipment. Handling and transport of the workpiece. Input, between operations and exit transport. The level of automation of transport. Quality control systems. Workpiece processing cycle: during processing, time of transport and waiting. Models of production systems. Single or multi-workpiece line, serial and flexible systems. The organization of the work flow through the production system. Methods of grouping of workpieces. The process of designing production systems: the task, analysis of variables, the concept of the project, plans processing, optimization solutions, the choice of the production model (lines, serial or flexible system). Choosing of the transportation system. Discrete simulation of production. Production systems within Industry 4.0.

	🔀 lectures	🗌 individual assignment
1 C Torobing	Seminars and workshops	multimedia and network
1.5. Teaching methods	🔀 exercises	laboratories
methoas	Iong distance education	🗌 mentorship
	🗌 fieldwork	Other
1.6. Comments		

1.7. Student'	s obliga	tions				
Attendance and a	activity o	on class, seminar work.				
1.8. Evaluatio	on of st	udent's work				
Course attendance	2	Activity/Participation	Seminar paper	2	Experimental work	
Written exam	1	Oral exam	Essay		Research	
Project		Sustained knowledge check	Report		Practice	
Portfolio						

Attendance, class participation, seminar work, written and/or oral exam.

1.10. Assigned reading (at the time of the submission of study programme proposal)

Mikac, T.: Designing the Production Systems, script, Faculty of Engineering, Rijeka, 2004. (in Croatian)

1.11. Optional / additional reading (at the time of proposing study programme)

Koren, Y.: The Global Manufacturing Revolution, McGraw Hill, New York, 2010. Tolio, T.: Design of Flexible Production Systems, Springer-Verlag Berlin Heidelberg, 2009.

1.12. Number of assigned reading copies with regard to the number of students currently attending the course

Title	Number of copies	Number of students
Mikac, T.: Designing the Production Systems, script, Faculty of Engineering, Rijeka, 2004. (in Croatian)	As needed	27

1.13. Quality monitoring methods which ensure acquirement of output knowledge, skills and competences

Through the Institution's quality assurance system.

Basic description				
Course title	Durability of Machines and Structures	Durability of Machines and Structures		
Study programme	Graduate University Study of Mechanical Engineering			
Course status	optional	optional		
Year	2.			
ECTS credits and	ECTS student 's workload coefficient	5		
teaching	Number of hours (L+E+S)	30+30+0		

1.1. Course objectives

Obtaining theoretical and practical knowledge required for assessment of life cycle of dynamically loaded machine and structure elements.

1.2. Course enrolment requirements

None.

1.3. Expected course learning outcomes

Describe the concept of fatigue. Describe the terms, load cycle and loading spectrum. Describe different approaches to the fatigue characterization and their application in assessment of durability. Explain how to plot Smith, Haigh. Explain Miner's rule. Describe experimental characterization of material and assessment of fatigue parameters. Describe stress concentration influence on durability. Explain the concept of safety with respect to the fatigue life. For a simple machine part and given operating condition perform assessment of the total life.

1.4. Course content

Load histories. Cycle counting technique. High-cycle fatigue and S-N curve. Smith, Haigh diagram. Counting techniques and Palmgren-Miner's rule. Different Influences on fatigue limit: temperature, stress concentration, surface treatment, environment condition. Strain based fatigue approach. Life prediction according to crack initiation. Experimental assessment of fatigue parameters. Consepts of linear–elastic and linear plastic fracture mechanics. Crack growth analysis and life assessment. The concepts of safety. Probabilistic aspect of safety.

1.5. Teaching methods lectures
 seminars and workshops
 exercises
 long distance education
 fieldwork

individual assignment
 multimedia and network
 laboratories
 mentorship
 other

1.6. Comments

1.7. Student's obligations

Course attendance, activity, project reports, studying

1.8. Evaluation of student's work

Course attendance	2	Activity/Participation	Seminar paper	Experimental work	
Written exam	1	Oral exam	Essay	Research	
Project		Sustained knowledge check	Report	Practice	

Portfolio	Project reports	2		
1.9. Procedu	re and examples of learning outcon	ne assessn	nent in class and at the fir	nal exam
Course attendand	ce, activity, project reports, written	exam		
1.10. A	ssigned reading (at the time of the	e submissio	on of study programme p	roposal)
Dowling N.E., Kan Lee Y.L., Barkey, I	e of structures and materials, Sprin npe N.E., Kral M.V.: Mechanical Bel M.E., Kang, HT.: Metal fatigue analy engineering, Elsevier Butterworth H	havior of N sis handb	Materials, 5 th ed., Global e ook: practical problem-sc	
1.11. C	Optional / additional reading (at the	time of p	roposing study programn	ne)
Fracture and Fa Zehnder, A.T.: Fra Richard H.A., San 1.12. Λ	ebs-Festigkeit, VDI Verlag, Duesseld tigue, ASM Handbook, 1997. acture Mechanics, Springer, Londor der M.: Fatigue Crack Growth: Dete Jumber of assigned reading copi g the course	n, 2012. ect-Asses-	Avoid, Springer, 2016.	of students currentl
	Title		Number of copies	Number of students
Schijve, J.: Fatigu	e of structures and materials, Sprin	ger, 2008.	2	9
	npe N.E., Kral M.V.: Mechanical Bel , Global ed., Pearson, 2020.	havior of	1	9
Materials, 5 th ed.,		/cic		
Lee Y.L., Barkey, I handbook: practi	M.E., Kang, HT.: Metal fatigue analy cal problem-solving techniques for g, Elsevier Butterworth Heinemann	computer	- 1	9

Basic description				
Course title	Dynamics of Offshore Structures	Dynamics of Offshore Structures		
Study programme	Graduate University Study of Mechanical Engineering			
Course status	optional	optional		
Year	2.	2.		
ECTS credits and	ECTS student 's workload coefficient	5		
teaching	Number of hours (L+E+S)	30+30+0		

1.1. Course objectives

Understanding stochastic models of sea waves, current and wind loads on offshore constructions. The ability to estimate the probability of exceedance for certain dynamic effects criteria. Developing the ability to work in small groups (teamwork).

1.2. Course enrolment requirements

None.

1.3. Expected course learning outcomes

Specify the basic methods of dynamic analysis of offshore structures. Properly explain, and interpreted the basic parameters of the waves as a random process. Explain stochastic model of action of waves, currents and wind on offshore structures. Indicate the design and operational parameters which have an influence on the dynamic response of offshore structures on the sea waves. Describe the procedures for short-term and long-term prediction of the dynamic response of offshore structures of offshore structures. Calculate the probability of exceedance of certain dynamic effects.

1.4. Course content

Dynamic aspects of importance for various offshore structures. Methods of analysis. Fundaments of probabilistic processes. Sea waves and sea states. Wave spectrums. Wave forces on slender structures (Morison's equation). Wave forces on large structures (diffraction theory). Effect of currents and winds. Response of a one-degree-of-freedom system. Multi-degree-of-freedom linear system. Deterministic and stochastic design methods. Response of offshore structures on sea waves. Short-term and long term prediction.

1.5. Teaching methods		 lectures seminars and worksho exercises long distance education 		multi		signment and network	
1.6. Common	4 0	Fieldwork		other			
1.6. Comments -							
	1.7. Student's obligations						
	Course attendance, activity, studying.						
1.8. Evaluatio	n of sti					Evenerimental	
Course attendance	2	Activity/Participation	Semina	r paper	0.5	Experimental work	

1	Oral exam		Essay		Research	
	Sustained knowledge check	1.5	Report		Practice	
	Homework					
e and e	xamples of learning outcor	ne asse	essment ir	n class and at the	e final exam	
lance, s	eminar paper, activity, con	tinuou	s knowled	dge testing, writt	en and oral ex	am.
ssigned	reading (at the time of the	e subm	ission of s	study programm	e proposal)	
Лassie,	W.W.: Introduction in Of					
ptional	/ additional reading (at the	e time (of proposi	ing study progra	mme)	
					voths, London,	1979.
		ies wit	h regard	to the numb	er of student	s currently
	Title			Number of cop	IPS	nber of Idents
	nip dynamics, Faculty of a arrow of a content of a content of a content of a content of the cont	•	neering	10		9
<i>,</i> i iiiti		ore				
	dance, s ssigned sic ship Massie, s, 2001. ptional ić V.: Se lker, S.: umber g the co	check Homework re and examples of learning outcor dance, seminar paper, activity, con ssigned reading (at the time of the sic ship dynamics, Faculty of Eng Massie, W.W.: Introduction in Of s, 2001. Introduction in Of s, 2001.	check 1.5 Homework 4 re and examples of learning outcome assested 4 dance, seminar paper, activity, continuou 4 ssigned reading (at the time of the submestic ship dynamics, Faculty of Engineering 6 Massie, W.W.: Introduction in Offshore 6 aptional / additional reading (at the time of the submestic science) 6 additional reading (at the time of the submestic science) 6 assie, W.W.: Introduction in Offshore 6 additional reading (at the time of the submestic science) 6 additional reading (at the time of the submestic science) 6 additional reading (at the time of the submestic science) 7 additional reading (at the time of the submestic science) 7 additional reading (at the time of the submestic science) 7 additional reading (at the time of the submestic science) 7 additional reading copies with the submestic science) 7 additional reading copies with the submestic science) 7 additional reading copies 7 additional reading copies 7 additional reading copies 7 additional reading copies 7	check 1.5 Report Homework Homework Homework dance, seminar paper, activity, continuous knowled ssigned reading (at the time of the submission of s ssigned reading (at the time of the submission of s ssigned reading (at the time of the submission of s Massie, W.W.: Introduction in Offshore Hydrome s, 2001. Introduction in Offshore Hydrome ptional / additional reading (at the time of propositional / additional reading (at the time of propositional / additional reading copies with regard gthe course Introduction of of the submission of s	check 1.5 Report Homework Homework Image: Second State	check 1.5 Report Practice Homework Image: Second State

1.13. Quality monitoring methods which ensure acquirement of output knowledge, skills and competences

Basic description				
Course title	Elements of Transport Technic			
Study programme	Graduate University Study of Mechanical Engi	neering		
Course status	optional			
Year	2.			
ECTS credits and	ECTS student 's workload coefficient	4		
teaching	Number of hours (L+E+S)	45+30+0		

1.1. Course objectives

Acquiring knowledge and skills about topics related to transport technic. The development of the ability to calculate, design and apply transport technic in industrial praxis, using modern materials and taking into consideration demands regarding reliability, safety, quality, cost, ecology, ergonomics, engineering ethics, etc.

1.2. Course enrolment requirements

None.

1.3. Expected course learning outcomes

Explain term, purpose, classification, application and historical development of transport technic. Explain and define classification and characteristics of transportational materials. Explain standards and service classes of hoisting appliances. Explain and define elements and devices for material handling. Define calculation and design of elements and devices for material handling. Explain and define element and devices. Define calculation and design of transport equipment and devices. Understand the importance of using transportation ecology and engineering ethics in design and application of transport technic. Apply acquired knowledge in design and application of transport technic.

1.4. Course content

Introduction. Transport of materials and people. Historical development. The importance and place of transport in the industry. Basic concepts, application, divisions and characteristics of transport technic. Classification and characteristics of transportational materials. Standards and service classes of hoisting appliances.

Elements and devices for material handling: hooks, stirrups, nippers, baskets, grabs, electro-magnets, steel wire ropes, chaines, pulleys, drums, brakes, wheels, rails, motor drives: - principal features, types, purpose, description, calculation and design.

Industrial winches: - principal features, types, purpose, description, calculation and design.

Belt conveyors, bucket elevators, table top chain conveyors, overhead chain conveyors, roller conveyors, vibratory conveyors, screw conveyors, pneumatic conveyors, air conveyors, flight conveyors: - principal features, types, purpose, description, calculation and design.

Analysis of the importance of using transportation ecology and engineering ethics in design and application of transport technic.

1.5. Teaching methods	 lectures seminars and workshops exercises long distance education fieldwork 	 individual assignment multimedia and network laboratories mentorship other
1.6. Comments		

1.7. Student's obligations

Course attendance, activity, solving assigned project work, studying.

1.8. Evaluation of student's work

	,					
Course attendance	2.5	Activity/Participation		Seminar paper	Experimental work	
Written exam	0.5	Oral exam		Essay	Research	
Project	0.5	Sustained knowledge check	0.5	Report	Practice	
Portfolio		Homework				

1.9. Procedure and examples of learning outcome assessment in class and at the final exam

Course attendance, 2 mid-term exams, project work, final written exam.

1.10. Assigned reading (at the time of the submission of study programme proposal)

Piršić, T.: Transport in Industry, FESB, Split, 2005. (in Croatian)

Ščap, D.: Transport Devices, Fakultet strojarstva i brodogradnje, Zagreb, 2004. (in Croatian) Trešćec, I.: Theory, Calculation and Application of Belt Conveyors, Zavod za produktivnost, Zagreb, 1983. (in Croatian)

1.11. Optional / additional reading (at the time of proposing study programme)

Oluić, Č.: Transport in industry, Sveučilišna naklada d.o.o., Zagreb 1991. (in Croatian)

Herold, Z., Ščap, D., Hoić, M.: Lifting and Handling Equipment, Part 1, Fakultet strojarstva i brodogradnje, Zagreb, 2020. (in Croatian)

Herold, Z., Ščap, D., Hoić, M.: Lifting and Handling Equipment, Part 2, Fakultet strojarstva i brodogradnje, Zagreb, 2020. (in Croatian)

Dundović, Č., Hess, S.: Indoor Transport and Warehousing, Pomorski fakultet, Rijeka, 2007. (in Croatian) Baura, Gail, D.: Engineering Ethics: An Industrial Perspective, Elsevier Academic Press, USA, 2006. Fayed, M.E., Skocir, T.S.: Mechanical Conveyors, CRC Press, U.S.A., 2009.

1.12. Number of assigned reading copies with regard to the number of students currently attending the course

Title	Number of copies	Number of students
Piršić, T.: Transport in Industry, FESB, Split, 2005. (in Croatian)	1	26
Ščap, D.: Transport Devices, Fakultet strojarstva i brodogradnje, Zagreb, 2004. (in Croatian)	1	26
Trešćec, I.: Theory, Calculation and Application of Belt Conveyors, Zavod za produktivnost, Zagreb, 1983. (in Croatian)	1	26

1.13. Quality monitoring methods which ensure acquirement of output knowledge, skills and competences

Basic description				
Course title	Energy and Process Devices			
Study programme	Graduate University Study of Mechanical Engineering			
Course status	optional			
Year	1.			
ECTS credits and	ECTS student 's workload coefficient	5		
teaching	Number of hours (L+E+S)	45+30+0		

1.1. Course objectives

Acquisition of theoretical knowledge and develop the skills needed to design, calculation and exploitation of power and process equipment, especially steam generators and heat generators.

1.2. Course enrolment requirements

None.

1.3. Expected course learning outcomes

Explain thermodynamic process of the steam generator and heat generator. Describe the changes of the working fluids in the steam generator and heat generator. Explain and calculate the heat exchange inside the steam generator and heat generator. Calculate combustion in the furnace (air volume, quantity and composition of flue gases). Explain heat losses in the steam generator and heat generator and define its efficiency. Explain the heat calculation of the steam generator and heat generator. Draw basic configurations of main types of steam generators and heat generators. Explain and describe the characteristics of fluidised bed furnaces. Explain the calculation of strength of main pressure parts. Calculate main dimensions. Describe and explain the hydrodynamic process inside of the steam generator and heat generator: circulation, flow of air and flue gas. Describe and explain auxiliary systems and equipment of steam generators and heat generators. Explain regulations regarding the design and exploitation of energy and process devices.

1.4. Course content

The introduction of s steam generators and heat generators. Fundamentals of steam generators and heat generators, types, operating parameters. Thermodynamic process in the steam generator and heat generator. Fludised bed combustion. Heat balance, losses and efficiency. Fuel and combustion. The thermal balance, calculation of heating surface. The circulation of water. Flow of glue gas and air. Utilisation of condensing heat of flue gases from a heat generator. Strength calculation and materials for pressure parts. Basics of automatic regulation and control of energy and process devices . Design and construction of steam generators and heat generators. Structural parts. Auxiliary devices. Other energy and process equipment.

1.5. Teaching methods	 lectures seminars and workshops exercises long distance education fieldwork 	 individual assignment multimedia and network laboratories mentorship other
1.6. Comments	-	

Course attendand	ce, activ	ity, studying.						
1.8. Evaluati	on of sti	udent's work						
Course attendance	2.5	Activity/Participation		Seminar	paper	Expe worl	erimental «	
Written exam	1.5	Oral exam		Essay		Rese	earch	
Project		Sustained knowledge check	1	Report		Prac	tice	
Portfolio								
1.9. Procedu	re and e	examples of learning outco	me ass	essment in	class and at	the final	exam	
Course atten	dance, a	activity, continuous knowle	edge te	sting (two	mid-term ex	ams), wri	itten or oral	exam.
1.10. A	ssigned	reading (at the time of th	ne subn	nission of s	tudy prograr	nme prop	oosal)	
	•	enerators (in Croatian), Ško ectures (pdf. on Faculty w		njiga, Zagre	eb, 1992.			
1.11. (Optional	/ additional reading (at th	ne time	of proposii	ng study pro	gramme)		
	0	itors (on Croatian), Školska u. M.: Steam Boilers of Po				Aoscow,	1985.	
1.12. N	lumber	of assigned reading cop	oies wi	th regard	to the nu	mber of	students cu	urrently
attendin	g the co	ourse						
		Title			Number of	copies	Number studen	-
- Prelec, Z.: Ship s Zagreb, 1992.	Ship steam generators (in Croatian), Školska knjiga, 292.420							
1.13. (Quality I	monitoring methods whic	:h ensu	ıre acquir	ement of o	utput kn	owledge, sk	ills and

Through the Institution's system of quality control

Basic description				
Course title	Engineering Logistics			
Study programme	Graduate University Study of Mechanical Eng	gineering		
Course status	optional			
Year	2.			
ECTS credits and	ECTS student 's workload coefficient	5		
teaching	Number of hours (L+E+S)	30+30+0		

1.1. Course objectives

Introduction to engineering logistics. Acquiring knowledge about engineering logistics topics through the study of materials transport, organisation, cost planning, and management.

1.2. Course enrolment requirements

None.

1.3. Expected course learning outcomes

Explain the term, purpose and historical development of engineering logistics. Explain technology and organisation of material handling. Explain and define storage of materials using pallets, boxes, warehouse shelves, warehouse racks and containers. Explain and define occasional and continuous transport systems. Analyse costs, planning, management and design of transport systems. Explain and define warehousing systems and processes. Analyse the technology, organisation, management and automation of warehousing systems. Explain and define industrial transport equipment and devices in warehouses. Analyse the technology and costs of vehicles in warehouses. Understand the importance of green logistics, city logistics, reverse logistics, transport logistics and engineering ethics in the design and management of engineering logistics. Explain, define and analyse the impact of inventories, strategic procurement, locations and distribution network of supply chains. Apply acquired knowledge in the design of engineering logistics systems.

1.4. Course content

Engineering and business logistics. Historical development of logistics. Logistic systems and processes. Material handling processes. Design, planning and management of engineering logistics. Technology and management of material handling. Basic principles, unit load, pallet, forklift. Storage of materials using pallets, boxes, warehouse shelves, warehouse racks and containers. Occasional and continuous transport systems. Conventional and automated transport systems in warehouses. Palletising and depalletising systems. Application of industrial transport equipment and devices in warehousing processes. Applications of green logistics, city logistics, reverse logistics, transport logistics and engineering ethics in processes of engineering logistics. Software and expert systems for design, analysis and simulation of engineering logistics systems. Location theory, distribution network planning and design, green supply chain management, inventory management, return logistics, strategic procurement.

1.5. Teaching methods	 lectures seminars and workshops exercises long distance education fieldwork 	 individual assignment multimedia and network laboratories mentorship other
1.6. Comments		

1.7. Student's obligations

Course attendance, activity, solving assigned project work, studying.

1.8. Evaluation of student's work

Course attendance	2	Activity/Participation		Seminar paper	Experimental work	
Written exam	1	Oral exam		Essay	Research	
Project	0.5	Sustained knowledge check	1.5	Report	Practice	
Portfolio						

1.9. Procedure and examples of learning outcome assessment in class and at the final exam

Course attendance, mid-term exams, project work, final written exam.

1.10. Assigned reading (at the time of the submission of study programme proposal)

Oluić, Č.: Warehousing in Industry, FSB, Zagreb, 1997. (in Croatian)

Zlonoga, D., Lukačević, M.: Pallets and Palletisation, August Šenoa, Zagreb, 1993. (in Croatian) Dundović, Č., Hess, S.: Indoor Transport and Warehousing, Pomorski fakultet, Rijeka, 2007. (in Croatian)

1.11. Optional / additional reading (at the time of proposing study programme)

Habus, J., Zlonoga, D.: Applications of Forklifts, Nakladništvo & Marketing, Zagreb, 1997. (in Croatian) Oluić, Č.: Transport in Industry, Sveučilišna naklada d.o.o., Zagreb 1991. (in Croatian)

Bowen, R. W.: Engineering Ethics, Springer-Verlag London Limited, 2009.

Richards, G.: Warehouse Management, Kogan Page Limited, London, 2015.

Canen, A. G., Canen, A.: Logistics in global corporations, Društvo za plastiku i gumu, Zagreb, 2011. (in Croatian)

Stroh, M. B.: A Practical Guide to Transportation and Logistics, Logistics Network, USA, 2006.

Frazelle, E. H.: World-Class Warehousing and Material Handling, McGraw-Hill, USA, 2002.

1.12. Number of assigned reading copies with regard to the number of students currently attending the course

attending the course		
Title	Number of copies	Number of students
Oluić, Č.: Warehousing in Industry, FSB, Zagreb, 1997. (in Croatian)	5	5
Zlonoga, D., Lukačević, M.: Pallets and Palletisation, August Šenoa, Zagreb, 1993. (in Croatian)	3	5
Dundović, Č., Hess, S.: Indoor Transport and Warehousing, Pomorski fakultet, Rijeka, 2007. (in Croatian)	1	5

1.13. Quality monitoring methods which ensure acquirement of output knowledge, skills and competences

Basic description					
Course title	Engineering Optimization	Engineering Optimization			
Study programme	Graduate University Study of Mechanical Engi	Graduate University Study of Mechanical Engineering			
Course status	optional	optional			
Year	2.				
ECTS credits and	ECTS student 's workload coefficient	5			
teaching	Number of hours (L+E+S)	Number of hours (L+E+S) 30+30+0			

1.1. Course objectives

Understand fundamental ideas of optimization methods. Mathematically formulate given optimization problems in engineering practice, recognize type and application of appropriate methods.

1.2. Course enrolment requirements

None.

1.3. Expected course learning outcomes

Analyze described optimal control problems. Set appropriate mathematical formulation of the problem. Classify optimization problems. Solve optimization problems with the aid of software. Evaluate results of applied methods. Correctly explain fundamental ideas and properties of some optimization methods. Develop basic ideas for optimization enhancements such as upgrades or simplification of optimization problem or underlying model, enhancements of optimization method, sensitivity analysis, metamodel use, and improvement of optimization process computational effectiveness.

1.4. Course content

Transport problem, work schedule problem, and similar problems. Linear programming. Basics of the simplex method. Application of LP software. Examples of nonlinear optimal control problems. Mathematical analysis tools. Numerical methods. Golden section search method. Powel methods. Ameba. CGD method. Application of software. Traveling salesman problem and similar problems. Genetic algorithms. GA operators: selection, crossover, and mutation. Application of GA software. Stochastic, heuristic and metaheuristic methods. Swarm intelligence methods: particle swarm optimization, ant colony optimization and related methods. Parametrization, shape optimization and topology optimization. Solving and presenting the results of complex engineering and multidisciplinary project tasks.

-					
				-	
1.5. Teaching	seminars and worksho	ps 📃 multi	media	and network	
	🖄 exercises	🔀 labor	atories		
	long distance educatio	n 🗌 ment	orship		
	🗌 fieldwork	other			
1.6. Comments -					
obliga	tions				
Course attendance, project, seminar paper.					
1.8. Evaluation of student's work					
2	Activity/Participation	Seminar paper	1	Experimental work	
	obliga e, proje n of stu	 exercises long distance educatio fieldwork s obligations project, seminar paper. n of student's work 	seminars and workshops multi exercises labor long distance education ment fieldwork other s - obligations e, project, seminar paper. n of student's work work	seminars and workshops multimedia exercises laboratories long distance education mentorship fieldwork other s - obligations e, project, seminar paper. n of student's work work	Seminars and workshops ☐ multimedia and network Sexercises ☐ laboratories ☐ long distance education ☐ mentorship ☐ fieldwork ☐ other s - obligations - e, project, seminar paper. - n of student's work Seminar paper 1 2 Activity/Participation Seminar paper 1

Written exam		Oral exam	0.5	Essay	Research	
Project	1.5	Sustained knowledge check		Report	Practice	
Portfolio						

Course attendance, project, seminar paper, oral exam.

1.10. Assigned reading (at the time of the submission of study programme proposal)

Andries P. Engelbrecht, Computational Intelligence: An Introduction, 2nd Edition, John Wiley & Sons Ltd, 2007.

Deb, K., Multi-objective optimization using evolutionary algorithms, John Wiley & Sons, Ltd., 2004 Cheng, F., Truman, K., Structural optimization : dynamic and seismic applications, Spon Press, 2010. Winston, L.W., Operations Research – Applications and Algorithms, Duxbury Press, Belmont, 1994. Bendsoe, M.P., Sigmund, O., Topology optimization : theory, methods and applications, Springer Verlag, 2004.

1.11. Optional / additional reading (at the time of proposing study programme)

Press, W., et al: Numerical Recipes for C/C++/Pascal/fortran, Cambridge University Press, 1992. Goldberg, D. E., Genetic Algorithms in Search, Optimization, and Machine Learning, Addison-Wesley Professional, 1989.

1.12. Number of assigned reading copies with regard to the number of students currently attending the course

Title	Number of copies	Number of students
Andries P. Engelbrecht, Computational Intelligence: An Introduction, 2nd Edition, John Wiley & Sons Ltd, 2007.	1	20
Deb, K., Multi-objective optimization using evolutionary algorithms, John Wiley & Sons, Ltd., 2004	1	20
Cheng, F., Truman, K., Structural optimization : dynamic and seismic applications, Spon Press, 2010.	1	20
Winston, L.W., Operations Research – Applications and Algorithms, Duxbury Press, Belmont, 1994.	1	20
Bendsoe, M.P., Sigmund, O., Topology optimization : theory, methods and applications, Springer Verlag, 2004.	1	20

1.13. Quality monitoring methods which ensure acquirement of output knowledge, skills and competences

Basic description					
Course title	Engineering Visualization				
Study programme	Graduate University Study of Mechanical Engineering				
Course status	optional	optional			
Year	1.				
ECTS credits and	ECTS student 's workload coefficient 4				
teaching	Number of hours (L+E+S)	Number of hours (L+E+S) 15+30+0			

1.1. Course objectives

Development of the ability to transform information into a visual form that enables visual perception of hidden features in the data that are required for data exploration and analysis.

1.2. Course enrolment requirements

None.

1.3. Expected course learning outcomes

Analyze input data. Select an appropriate visualization technique. Apply acquired knowledge to actual engineering issues.

1.4. Course content

Definitions, history, goals and principles of visualization. Overview of visualization applications. Visual perception, visualizations (images) and visual attributes. Visualization techniques. Data characteristics.

	🔀 lectures	🔀 individual assignment
1.5. Teaching	seminars and workshops	🛛 multimedia and network
methods	🔀 exercises	laboratories
methous	Iong distance education	mentorship mentorship
	🗌 fieldwork	Other
1.6. Comments	-	

1.7. Student's obligations

Course attendance and activity (lectures, exercises), constructive work, continuous knowledge testing.

1.8. Evaluation of student's work

	-						
Course attendance	1.5	Activity/Participation		Seminar paper		Experimental work	
Written exam	0.5	Oral exam		Essay		Research	
Project		Sustained knowledge check	0.5	Report		Practice	
Portfolio		Constructive work	1.5	Homework			

1.9. Procedure and examples of learning outcome assessment in class and at the final exam

Constructive work, continuous knowledge testing, written or oral exam.

1.10. Assigned reading (at the time of the submission of study programme proposal)

H. Wright: Introduction to Scientific Visualization, Springer, 2007.

G. Scott Owen, et al.: *HiperVis-Teaching Scientific Visualisation Using Hyper Media* (on –line), ACM SIGGRAPH Education Committee http://www.siggraph.org/education/materials/HyperVis/vistoc.htm, 1999.

1.11. Optional / additional reading (at the time of proposing study programme)

K. Brodlie, et al : Scientific Visualization, Techniques and Applications, Springer Verlag, 1992.

J. Brown, et al: Visualization Using Com. Graph. to Explore Data and Present Inform., John Wiley, 1995. D. Thompson, et al: OpenDX - Paths to Visualization, Visualization and Imagery Solutions, Inc., 2004.

1.12. Number of assigned reading copies with regard to the number of students currently attending the course

Title	Number of copies	Number of students
H. Wright: Introduction to Scientific Visualization, Springer, 2007.	2	16

1.13. Quality monitoring methods which ensure acquirement of output knowledge, skills and competences

Basic description				
Course title	Environmental Engineering			
Study programme	Graduate University Study of Mechanical Engi	Graduate University Study of Mechanical Engineering		
Course status	optional	optional		
Year	2.			
ECTS credits and	ECTS student 's workload coefficient	5		
teaching	Number of hours (L+E+S)	30+30+0		

1.1. Course objectives

Develop the capacity and competence to solve a variety of engineering problems in the field of environmental protection so as to find effective technical solutions to prevent or reduce pollution of the environment. Develop the ability to introduce and use the latest technologies that enable sustainable development.

1.2. Course enrolment requirements

None.

1.3. Expected course learning outcomes

Analyze the energy and industrial processes from the viewpoint of environmental protection. Describe the types and methods of formation of harmful effects on the environment. Define and calculate the emission into the atmosphere from the combustion process. Explain and calculate the impact of weather conditions on emissions into the atmosphere. Define and describe the technical procedures to reduce emissions of harmful substances into the environment. Develop and describe the schematic representations of flue gas treatment processes, wastewater and solid waste. Analyze and explain the driving factors wastewater treatment processes. Describe the procedures for the reduction, evaluation and treatment of waste. Describe the procedures for the treatment, removal and disposal of hazardous waste.

1.4. Course content

Introduction to environmental protection, basic ecological terms, the balance in the ecosystem, disturbances in the ecosystem. Pollution of the atmosphere, hydrosphere, lithosphere. Legislation. The impact of power and process plants on pollution emissions by flue gas, waste water, waste materials, emissions underground, thermal pollution, effects of pollution legislation. Technical measures to reduce environmental pollution: reduction of flue gas, flue gas treatment, changes in the combustion process, changes in process technology, preventive measures, treatment of waste water, treatment of waste materials (reuse, disposal, incineration), eliminating the effects of pollution. Waste to energy processes. Biogas and landfill gas. Hazardous waste and landfill gas. Ecological projects, the state of technical development in the field of environmental protection, new technologies, sustainable development.

	X lectures	🗌 individual assignment
1.5. Teaching	seminars and workshops	multimedia and network
methods	X exercises	laboratories
	Iong distance education	🗌 mentorship

		X fieldwork			other			
1.6. Commen	ts	-						
1.7. Student's	s obliga	tions						
Course attendanc	e, activ	ity, studying.						
1.8. Evaluatio	on of sti	udent's work						
Course attendance	2	Activity/Participation		Semina	r paper	Exp wo	oerimental rk	
Written exam	1.5	Oral exam		Essay		Res	search	
Project		Sustained knowledge check	1.5	Report		Pra	ctice	
Portfolio								
1.9. Procedur	e and e	examples of learning outcor	ne ass	essment i	in class and a	it the find	al exam	
Course attend	dance, a	activity, continuous knowle	dge te	sting (two	o mid-term e	xams), w	ritten or oral	exam.
1.10. A	ssigned	reading (at the time of the	e subm	ission of	study progra	mme pro	oposal)	
Prelec, Z.: Summa	iry of le	ctures (pdf. on Faculty web)					
1.11. O	ptional	/ additional reading (at the	e time	of propos	sing study pro	ogramme	e)	
- Prelec, Z.: Energ	y and p	rocess industry (Croatian),	Školska	a knjiga, Z	Zagreb, 1994			
- Kiely, G.: Enviror	nmenta	l Engineering, Mc Graw-Hill	l, Inter	national	Editions, 199	8		
Nelson L., Nemer	ow Fra	nk J. Agardy, Strategies of i	ndustri	ial and ha	azardous was	te mana	gment, Wiley	, 1998."
- Karl B. Schnelle,	Jr. et. a	l., Air pollution control tech	nnolog	y handbo	ook, CRC pres	s, 2002		
		of assigned reading copi	ies wit	th regard	d to the n	umber o	of students c	urrently
attendin	g the co	ourse						6
		Title			Number of	copies	Numbe studer	-
1.13. Q compete		monitoring methods which	h ensu	re acqu	irement of c	output k	nowledge, sk	ills ana
Through the Instit	tution's	system of quality control.						

Basic description					
Course title	Experimental Testing in Mechanics of Structure	Experimental Testing in Mechanics of Structures and Machines			
Study programme	Graduate University Study of Mechanical Engi	Graduate University Study of Mechanical Engineering			
Course status	optional	optional			
Year	2.	2.			
ECTS credits and	ECTS student 's workload coefficient	5			
teaching	Number of hours (L+E+S)	30+30+0			

1.1. Course objectives

Obtaining theoretical knowledge and develop skills to solve practical problems by experimental techniques in mechanics of structures and machines.

1.2. Course enrolment requirements

None.

1.3. Expected course learning outcomes

Describe basic elements of measurement system and define sensor characteristics and operation principles. Define basic procedures in experimental strain and stress analysis. Define operational principles of strain gages and describe possible strain gage circuits. Define basic sources of errors and techniques for eliminating the errors. Apply strain gages on practical problems.

Describe operating principle of contact and non-contact vibration sensors and measurements in frequency and time domain. Apply vibration sensors and other measurement equipment on practical problems. Describe operating principle of sensors and equipment for noise measurements, Apply noise measurement equipment on practical problems. Describe and apply norms for machine dynamics testing.

1.4. Course content

Introduction. Measurement instruments in structural mechanics. Elements of measurement system. Sensors. Sensor characteristics. Principles of operations of sensors. Experimental methods of stress and strain analysis. Strain gages. Application of strain gages. Elimination of errors during strain gages measurements. Application to elementary strength of materials. Standard tests on testing machine.

Measurement instruments in machine dynamics. Elements of measurement system. Vibration sensors. Sensor characteristics. Principles of operations of vibration sensors. Experimental methods in machine vibrations analysis. Contact and noncontact sensors. Calibration of sensors. Measurements in frequency and time domain. Norms in machine dynamics testing.

15 Torobing	\boxtimes lectures	🔀 individual assignment			
	seminars and workshops	multimedia and network			
1.5. Teaching methods	🔀 exercises	🔀 laboratories			
methous	Iong distance education	mentorship mentorship			
	🗌 fieldwork	Other			
1.6. Comments	-				
1.7. Student's obligations					
Couse attendance, activity, laboratory work, two seminar papers, studying.					
1.8. Evaluation of student's work					

Course attendance	2	Activity/Participation	Seminar	paper 1	Experimental work	1.5
Written exam	0.5	Oral exam	Essay		Research	
Project		Sustained knowledge check	Report		Practice	
Portfolio		Homework				
1.9. Procedur	re and e	xamples of learning outcom	ne assessment in	class and at t	he final exam	
Course attend	dance, a	ctivity, laboratory work, tw	vo seminar papei	rs, written exa	m.	
1.10. A	ssigned	reading (at the time of the	e submission of s	tudy programı	ne proposal)	
	easurem	"Experimental stress analy nent of vibrations ", in Alfire n)				njiga,
1.11. O	ptional	/ additional reading (at the	e time of proposi	ng study progr	amme)	
"Machine Diagno: Machine Damage Webster J. G.: "M	sis: Met using V easurei umber	action to measurements usi hods and Instruments for A librations Measurements", ments, Instrumentation and of assigned reading copi purse	Analyzing Machir Carl Schenck AG d Sensors Handb	ne Condition ar , Darmstadt, 1 ook, CRC Press	nd for Early Recog 993. 5, Boca Raton, 199	9.
		Title		Number of co	pies Numb stude	-
Dally, J. W. & Rile McGraw-Hill, Tok		"Experimental stress analy 7.	rsis",	2	14	Ļ
•		nent of vibrations ", in Alfire ", Školska knjiga, Zagreb, 19		2	14	

Basic description				
Course title	Finite Element Analysis of Solids	Finite Element Analysis of Solids		
Study programme	Graduate University Study of Mechanical Engineering			
Course status	optional	optional		
Year	1.			
ECTS credits and	ECTS student 's workload coefficient	5		
teaching	Number of hours (L+E+S)	30+30+0		

1.1. Course objectives

The main objectives of this course are developing the knowledge, ability and skills in the field of structural modelling and analysis of stresses and strains.

1.2. Course enrolment requirements

Basic knowledge from mechanics of rigid and deformable bodies and finite element method.

1.3. Expected course learning outcomes

Define the load vector, displacement vector and stiffness matrix. Define the basic equilibrium equation of the finite element based on the displacement method. Basic transformation matrix. Determine the global equilibrium equation. Analyze the structural response: beams, plates, structures, etc. Analyse also the simpler cases of the dynamic response of structure. Apply the finite element method in structural optimization.

1.4. Course content

Fundamentals and development of Finite Element Method. Matrix formulations of theory of elasticity. Variational formulation of Finite Element Method. Other possible formulations. Interpolation functions and interpolation matrix. Finite element and structure: Load vector, displacement vector and stiffness matrix. Transformation matrix. Boundary conditions. Rods, beams, plates, etc. Introduction to dynamic of structure. Application of Finite Element Method: Theory of elasticity, plasticity, stability, dynamics and structural optimization.

	\boxtimes lectures	individual assignment
1.5. Teaching	seminars and workshops	multimedia and network
	🔀 exercises	🔀 laboratories
methods	Iong distance education	mentorship mentorship
	🗌 fieldwork	Other

1.6. Comments

1.7. Student's obligations

Course attendance, exercises, homework, partial exams, final exam.

Course attendance	2	Activity/Participation		Seminar paper	Experimental work	
Written exam	1	Oral exam		Essay	Research	
Project		Sustained knowledge check	2	Report	Practice	
Portfolio		Homework				

Continuous knowledge testing. Written and oral exam.

1.10. Assigned reading (at the time of the submission of study programme proposal)

Brnić, J., Čanađija, M.: Analysis of Solid Bodies by Finite Element Method, Fintrade & Tours, d.o.o., Rijeka, 2009.

Brnić, J.: Elastomechanics and Plastomechanics, Školska knjiga, Zagreb, 1996.

1.11. Optional / additional reading (at the time of proposing study programme)

Bathe, K. J.: Finite Element Procedures, Prentice Hall, Englewood Cliffs, 1996.

Zienkiewicz, O. C., Taylor, R. L.: The Finite Element Method, Vol. 1, Butterworth-Heinemann, 2000.

Przemieniecki, J. S.: Theory of Matrix Structural Analysis, Dover Publication, New York, 2012.

1.12. Number of assigned reading copies with regard to the number of students currently attending the course

Title	Number of copies	Number of students
Brnić, J., Čanađija, M.: Analysis of Solid Bodies by Finite Element Method, Fintrade & Tours, d.o.o., Rijeka, 2009.	10	19
Brnić, J.: Elastomechanics and Plastomechanics, Školska knjiga, Zagreb, 1996.	13	19

1.13. Quality monitoring methods which ensure acquirement of output knowledge, skills and competences

Basic description					
Course title	Fluid Dynamics				
Study programme	Graduate University Study of Mechanical Engineering				
Course status	optional	optional			
Year	1.	1.			
ECTS credits and	ECTS student 's workload coefficient	5			
teaching	Number of hours (L+E+S)	30+30+0			

1.1. Course objectives

Understanding the physical meaning of laws and equations of fluid dynamics and develop the ability of students to solve problems related to the field of fluid dynamics and creation of independent works and projects related to different set problems involving fluid

1.2. Course enrolment requirements

None.

1.3. Expected course learning outcomes

Specify and correctly interpret the basic laws and equations of fluid dynamics: transport theorem, the law of conservation of mass and continuity equation, the law of conservation of momentum. Specify and correctly interpret the Euler equation for a perfect fluid, Navier Stokes equations for a viscous fluid and examples of elementary solutions. Specify and correctly interpreted the law of conservation energy and flow equations for compressible fluids. Specify and correctly interpret turbulence, ways of modelling turbulence and Reynolds equations of turbulent flow. Apply a commercial software for the simulation of turbulent fluid flow, different problems engineering practices, unsteady flow in pipelines, unsteady flow with free surface

1.4. Course content

Basic laws and equation of fluid dynamics. Navier Stokes equations for viscous fluid and some solutions. Turbulence. Turbulence models. Flow in pipe systems. Free surface flow. Flow around bodies. Application on engineering problems using software.

	\boxtimes lectures	🔀 individual assignment
1.5. Teaching	seminars and workshops	multimedia and network
5	🔀 exercises	laboratories
methods	Iong distance education	mentorship mentorship
	🗌 fieldwork	other

1.6. Comments

1.7. Student's obligations

Course attendance, activity, homework, studying.

1.8.	Evaluation o	f student's	work

Course attendance	2	Activity/Participation		Seminar paper	1	Experimental work	
Written exam	0.5	Oral exam		Essay		Research	
Project		Sustained knowledge check	1.5	Report		Practice	
Portfolio		Homework					

Course attendance, activity, homework, continuous knowledge testing (three mid-term exams), written and oral exam.

1.10. Assigned reading (at the time of the submission of study programme proposal)

L.G.Loicansky. Mechanics of fluids and gases. Moscow, Nauka, 1970

L D Landau, E.M. Lifshitz, Fluid Mechanics, Second Edition: Volume 6, Butterworth Heinemann, 1987.

1.11. Optional / additional reading (at the time of proposing study programme)

L. Sopta, L. Kranjčević, Mehanika fluida, skripta. Tehnički fakultet Rijeka, 2004. Bruce R. Munson, D. F. Young, T. H. Okiishi, Fundamentals of Fluid Mechanics, 4th Updated Edition, John Wiley and

Sons, 2003.

Streeter, V.L, Wylie E.B., Fluid mechanics, 8th edition, McGraw Hill, 1985

1.12. Number of assigned reading copies with regard to the number of students currently attending the course

Title	Number of copies	Number of students
L.G.Loicansky. Mechanics of fluids and gases. Moscow, Nauka, 1970	1	6
L D Landau, E.M. Lifshitz, Fluid Mechanics, Second Edition: Volume 6 (Course of Theoretical Physics), Butterworth	1	6
1.13. Quality monitoring methods which ensure acqu competences	iirement of output ki	nowledge, skills and
Through the Institution's quality assurance system.		

	Basic description				
Course title	Forming Technology				
Study programme	Graduate University Study of Mechanical Engi	Graduate University Study of Mechanical Engineering			
Course status	optional	optional			
Year	1.				
ECTS credits and	ECTS student 's workload coefficient	5			
teaching	Number of hours (L+E+S)	30+30+0			

1.1. Course objectives

Acquisition of theoretical knowledge and training for performing calculations in forming technology and use of available software.

1.2. Course enrolment requirements

None.

1.3. Expected course learning outcomes

To calculate the required amount of input material for forming process. To define and to analyze the parameters of the given forming process. To compare different forming processes. To evaluate and to argue the choice of forming process. To apply the available software in forming technology.

1.4. Course content

Classification of forming processes. Physical foundations of forming by deformation. Fundamentals of plasticity theory. Basic concepts of forming by deformation (plasticity and ductility, degrees of deformation, strain rate, flow stress, deformation force and work, plastic flow condition and deformability). Contact friction. Deformation processes of massive (3D) parts: forging, rolling, extrusion and drawing. Sheet metal forming processes (2D): bending, deep drawing and cutting (shearing, punching and blanking). Special and non conventional forming processes. Application of available software in forming technology.

1.5. Teaching methods	 lectures seminars and workshops exercises long distance education fieldwork 	 individual assignment multimedia and network laboratories mentorship other
1 C Common outo		

1.6. Comments

1.7. Student's obligations

Course attendance, control tasks, preparation a report of computer exercises, independent learning.

1.8. Evaluati	on of st	udent's work				
Course attendance	2	Activity/Participation		Seminar paper	Experimental work	
Written exam	1	Oral exam		Essay	Research	
Project		Sustained knowledge check	1.5	Report	Practice	
Portfolio		Report of computer exercises	0.5			

Course attendance, sustained knowledge check, report of computer exercises, written and / or oral exam.

1.10. Assigned reading (at the time of the submission of study programme proposal)

Duplančić, I.: Metal Forming Processes, Fakultet elektrotehnike, strojarstva i brodogradnje Sveučilišta u Splitu, 2007. (in Croatian)

1.11. Optional / additional reading (at the time of proposing study programme)

Kampuš. K., Kuzman, K.: Metal Forming Recommendations, Fakulteta za strojništvo, Ljubljana, 2007. (in Slovenian)

1.12. Number of assigned reading copies with regard to the number of students currently attending the course

Title	Number of copies	Number of students
Duplančić, I.: Metal Forming Processes, Fakultet elektrotehnike, strojarstva i brodogradnje Sveučilišta u Splitu, 2007. (in Croatian)	2	16

1.13. Quality monitoring methods which ensure acquirement of output knowledge, skills and competences

	Basic description				
Course title	Fuels, Lubricants and Water				
Study programme	Graduate University Study of Mechanical Engineering				
Course status	optional				
Year	2.	2.			
FCTS gradits and tapphing	ECTS student 's workload coefficient	5			
ECTS credits and teaching	Number of hours (L+E+S)	30+30+0			

1.1. Course objectives

Getting acquainted with the theoretical aspects of fuels, lubricants and water. Understanding the structure, properties and processing of fuels. Understanding the functions and properties of lubricants and additives. Understanding the properties, application and processing of water.

1.2. Course enrolment requirements

None.

1.3. Expected course learning outcomes

Describe the basic properties of fuels and the technological processes of production and processing of certain types of fuel. Understand the dependency of hydrocarbon properties and chemical structure. Sketch the basic fuel production processes. Describe lubricant functions in machines. Define the characteristic lubricant properties. Understand the properties, application and treatment of water.

1.4. Course content

The role of fuel in the society. The origin and classification of fuels. Combustion. solid, liquid and gaseous fuels. Processes of production, transport and processing of fuels. Chemical composition and fuel properties. Octane and cetane number. Fuel and environmental protection. Basic lubricants functions. Friction and lubrication. Base oils and additives. Lubricant greases. Lubrication types. Lubricant properties, classification and standards. Lubricant deterioration. Properties, applications and treatment of water.

1.5. Teaching methods	 lectures seminars and workshops exercises long distance education fieldwork 	 individual assignment multimedia and network laboratories mentorship other

1.6. Comments

1.7. Student's obligations

Lectures and excercises attendance, individual learning

1.8. Evaluation of student's work							
Course attendance	2	Activity/Participation		Seminar paper		Experimental work	
Written exam	1	Oral exam		Essay		Research	
Project		Sustained knowledge check	2	Report		Practice	
Portfolio							

Course attendance, activity, continuous knowledge testing (two mid-term exams), written or oral final exam.

1.10. Assigned reading (at the time of the submission of study programme proposal)

1.11. Optional / additional reading (at the time of proposing study programme)

Enco Tireli: Fuels and its Marine Applications, Sveučilište u Rijeci, Pomorski fakultet, Rijeka 2005 (in Croatian) Enco Tireli, Joško Dvornik, Josip Orović: Lubricants and their Marine Applications, Sveučilište u Rijeci, Pomorski fakultet, Rijeka

2010 (in Croatian)

George E. Totten, editor; section editors, Steven R. Westbrook, Rajesh J. Shah: Fuels and Lubricants Handbook: Technology, Properties, Performance, and Testing, ASTM International, 2003..

1.12. Number of assigned reading copies with regard to the number of students currently attending the course

Title	Number of copies	Number of students
		27
1.13. Quality monitoring methods which ensure acquir competences	ement of output kn	owledge, skills and
Through the Institution's quality assurance system.		

Basic description					
Course title	Gas Engineering				
Study programme	Graduate University Study of Mechanical Engi	Graduate University Study of Mechanical Engineering			
Course status	optional				
Year	2.	2.			
ECTS credits and	ECTS student 's workload coefficient 5				
teaching	Number of hours (L+E+S)	Number of hours (L+E+S) 45+15+0			

1.1. Course objectives

Acquiring theoretical knowledge and training of skills for solving practical problems in the field of gas engineering.

1.2. Course enrolment requirements

Attended course Thermodynamics II.

1.3. Expected course learning outcomes

Classify fuel gases with respect to their properties, production technology and industrial processing, transport and distribution, storage and consumption. Describe the physical properties, storage and application of technical gases. Analyze the interchangeability of fuel gases. Design and calculate domestic gas installations and gas connections for natural gas and liquefied petroleum gas. Describe the procedures for the testing of strength and tightness of gas installations. Describe the fire protection measures and the workplace safety precautions in gas engineering. Analyze and evaluate the performance of low-carbon fuels and technologies. Describe the physical properties, the production, storage, transport and consumption of hydrogen, liquefied natural gas (LNG), compressed natural gas (CNG) and the carbon capture, compression and storage technology (CCS).

1.4. Course content

Classification and types of gaseous fuels. Gas fields exploitation and types. Natural gas processing industry. Physical properties of gaseous fuels, gas mixtures and technical gases: density, critical state, compressibility, boiling point, heating value, flammability, interchangeability of gas fuels. Transport and distribution of natural gas. Management of natural gas systems. Natural gas pipelines, equipment, regulation and measurement. Design of home gas connections and domestic installations using natural gas or liquefied petroleum gas installations. Design of gas boiler rooms, air intake and flue gases discharge systems. Safety, control and maintenance of gas systems and gas installations. Test procedures for strength and tightness. Fire protection measures and workplace safety precautions in gas engineering. Production, storage and application of technical gases: acetylene, carbon dioxide, nitrogen and oxygen. Physical properties, transport, storage and consumption of liquefied petroleum gas. Application of low-carbon fuels and technologies in gas engineering. Hydrogen energy and fuel cells. Production, transport and storage of hydrogen. Liquefied natural gas (LNG): liquefaction, transport, storage and regasification. Capture, compression and storage of carbon dioxide (CCS). Carbon capture technologies. CO₂ storage and use for enhanced oil recovery. Gaseous fuels in transport and their environmental impact.

1.5. Teaching methods	🔀 lectures	individual assignment
	seminars and workshops	multimedia and network
		laboratories
	Iong distance education	mentorship
	🔀 fieldwork	other

1.6. Comments

1.7. Student's obligations

Lectures, exercises and fieldwork attendance. Individual learning.

1.8. Evaluation of student's work

Course attendance	2	Activity/Participation		Seminar paper	Experimental work	
Written exam		Oral exam	1.5	Essay	Research	
Project		Sustained knowledge check	1.5	Report	Practice	
Portfolio		Homework				

1.9. Procedure and examples of learning outcome assessment in class and at the final exam

Course attendance, activity, continuous knowledge testing (two mid-term exams), written and oral exam.

1.10. Assigned reading (at the time of the submission of study programme proposal)

Strelec V.: Gas Engineering Handbook, 7th ed., Energetika marketing, Zagreb, 2014. (in Croatian) Strelec V.: Gas Engineering Handbook, 5th ed., Energetika marketing, Zagreb, 1995. (in Croatian) Technical rules for the design, construction, use and maintenance of gas installations, HSUP-P600, 2. ed., Zagreb, 2017. (in Croatian)

1.11. Optional / additional reading (at the time of proposing study programme)

Technical rules for the design and construction of domestic gas installations GPZ-PI600, Zagreb, 1993. (in Croatian)

Reminder for the design maintenance of gas installations, 3rd ed., Energetika Marketing, Zagreb, 2018. (in Croatian)

Labudović, B.: Basics of liquefied petroleum gas engineering, Energetika marketing, Zagreb, 2007. (in Croatian) Treloar, R. D.: Gas Installation Technology, 2nd ed., Wiley-Blackwell, 2010.

Hazlehurst, J.: Tolley's Basic Science and Practice of Gas Service: Gas Service Technology Volume 1, 5th ed., Elsevier, 2009.

Hazlehurst, J.: Tolley's Domestic Gas Installation Practice: Gas Service Technology Volume 2, 5th ed., Elsevier, 2009.

Hazlehurst, J.: Tolley's Industrial and Commercial Gas Installation Practice: Gas Service Technology Volume 3, 5th ed., Elsevier, 2009.

1.12. Number of assigned reading copies with regard to the number of students currently attending the course

Title	Number of copies	Number of students			
Strelec V.: Gas Engineering Handbook, 7th ed., Energetika marketing, Zagreb, 2014. (in Croatian)	1	20			
Strelec V.: Gas Engineering Handbook, 5th ed., Energetika marketing, Zagreb, 1995. (in Croatian)	1	20			
Technical rules for the design, construction, use and maintenance of gas installations, HSUP-P600, 2. ed., Zagreb, 2017. (in Croatian)	1	20			
1.13. Quality monitoring methods which ensure acquirement of output knowledge, skills and competences					

Basic description				
Course title	Graduate Work	Graduate Work		
Study programme	Graduate University Study of Mechanical Engineering			
Course status	compulsory			
Year	2.			
ECTS credits and	ECTS student 's workload coefficient	10		
teaching	Number of hours (L+E+S)	-		

1.1. Course objectives

Graduate work is an individual assignment and verification of student expertises, which should show the appropriate level of engineering skills for individually solving specific professional task.

1.2. Course enrolment requirements

Enrolled course from which the Graduate Work is selected.

1.3. Expected course learning outcomes

Apply acquired knowledge, expertises and skills of the content of Graduate Work associated course. Solve practical task. Acquire competence for individually solving specific professional task.

1.4. Course content

The content of the Graduate Work is based on the application of acquired knowledge from educational programs at the graduate university studies. Final thesis can be specified from a particular course specific professional content and exceptionally from course that belongs to the group of shared content, when it represents a broader entity with a particular course specific content of the studies. Student enrollers the Graduate Work by enrolling the last semester. Thesis of the Graduate Work is establishes by Commission for Graduate Works, based on suggestion of teacher who will mentor the Graduate Work.

1.6. Commonto		
methous	Iong distance education	⊠ mentorship □other
1.5. Teaching methods		🗌 laboratories
	seminars and workshops	multimedia and network
	lectures	🔀 individual assignment

- 1.6. Comments
- 1.7. Student's obligations

Attending the consultation, individually solving task and writing the Graduate Work report.

1.8. Evaluation of student's work

Course attendance	Activity/Participation		Seminar paper		Experimental work	
Written exam	Oral exam		Essay		Research	
Project	Sustained knowledge check		Report		Practice	
Portfolio	Individual task solving	8	Final work in written form	2		

1.9. Procedure and examples of learning outcome assessment in class and at the final exam

Assesses and evaluates the accuracy and completeness of a given task solving process, the Graduate Work written report, and its oral presentation

1.10. Assigned reading (at the time of the submission of study programme proposal)

1.11. Optional / additional reading (at the time of proposing study programme)

1.12. Number of assigned reading copies with regard to the number of students currently attending the course

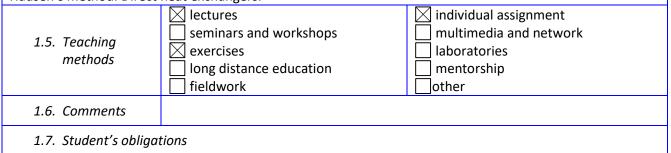
	Title		Number of copies	Number of students
1.13. com	Quality monitoring methods which ensure of a petences	acqui	irement of output kr	nowledge, skills and

Basic description				
Course title	Heat Exchangers			
Study programme	Graduate University Study of Mechanical Engineering			
Course status	optional			
Year	1.			
ECTS credits and	ECTS student 's workload coefficient	4		
teaching	Number of hours (L+E+S)	30+30+0		

1.1. Course objectives

Obtaining theoretical knowledge and develop skills to solve practical problems in the field of heat transfer as well as performing thermal analyses of heat exchangers as parts of thermal and energy systems.

1.2. Course enrolment requirements


Basic knowledge of thermodynamics.

1.3. Expected course learning outcomes

Define and describe the heat transfer. Define tasks and describe and compare the basic types of heat exchangers. Describe models and analyze the heat transfer in the recuperative heat exchangers with singlepass of fluids. Analyze and compare the recuperative heat exchangers with parallel-flow, counter-flow and cross-flow. Describe and analyze the heat transfer in the recuperative heat exchangers with multi-pass of fluids. Describe models and analyze the heat transfer in shell and tube heat exchangers with and without baffles. Describe models and analyze the heat transfer in plate heat exchangers. Describe models and analyze the heat transfer in plate heat exchangers. Describe models and analyze the heat exchangers. Describe the thermal analysis of counter-flow reversal heat regenerator using Hausen's method. Describe the main characteristics and analyze the heat transfer in the rotary regenerative heat exchangers. Describe the heat transfer in direct heat exchangers. Apply acquired knowledge to solve thermodynamic tasks (practical problems) and to perform thermal analyses of heat exchangers.

1.4. Course content

Heat transfer. The task and classification of heat exchangers. Recuperative heat exchangers. Models and calculation. Heat exchangers with single-pass of fluids. Parallel-flow, counter-flow and cross-flow heat exchangers. Universal thermal analysis for various types of heat exchangers. The logarithmic mean temperature difference. Heat effectiveness. Thermal efficiency. Optimum surface size. Heat exchangers with multi-pass of fluids. Shell and tube heat exchangers. Heat exchangers without baffles. Heat exchangers with baffles. Plate heat exchangers. Regenerative heat exchangers. Main characteristics and classification. Models of regenerators and calculation methods. Thermal analysis of counter-flow reversal heat regenerator using Hausen's method. Rotary regenerators. Main characteristics and classification. Thermal analysis using Hausen's method. Direct heat exchangers.

Course attendance, activity, homework, studying.

1.8. Evaluation of student's work

,							
Course attendance	2	Activity/Participation		Seminar paper		Experimental work	
Written exam		Oral exam	0.5	Essay		Research	
Project		Sustained knowledge check	1	Report		Practice	
Portfolio		Homework	0.5				

1.9. Procedure and examples of learning outcome assessment in class and at the final exam

Course attendance, activity, homework, continuous knowledge testing (three mid-term exams), written and oral exam.

1.10. Assigned reading (at the time of the submission of study programme proposal)

Bošnjaković, F.: Thermodynamics, Vol. I, II and III (reprint editions of 1978, 1976 and 1986), Graphis d.o.o., Zagreb, 2012. (in Croatian)

Galović, A.: Termodynamics II, (book), Fakultet strojarstva i brodogradnje, Zagreb, 2007. (in Croatian) Slipčević, B.: Heat exchangers, (book), SMEITS, Beograd, 1989. (in Croatian)

1.11. Optional / additional reading (at the time of proposing study programme)

Kakac, S., Liu, H.: Heat exchangers, CRC Press, Florida, 2002.

Kays, W.M., London, A.L.: Compact heat exchangers, McGraw-Hill Book Co., NY,1984.

1.12. Number of assigned reading copies with regard to the number of students currently attending the course

Title	Number of copies	Number of students
Bošnjaković, F.: Thermodynamics, Vol. I, II and III (reprint editions of 1978, 1976 and 1986), Graphis d.o.o., Zagreb, 2012. (in Croatian)	23	30
Galović, A.: Termodynamics II, (book), Fakultet strojarstva i brodogradnje, Zagreb, 2007. (in Croatian)	2	30
Slipčević, B.: Heat exchangers, (book), SMEITS, Beograd, 1989. (in Croatian)	4	30
1 13 Ouglity monitoring methods which ensure acqu	uiromant of output k	nowladaa chille a

1.13. Quality monitoring methods which ensure acquirement of output knowledge, skills and competences

Basic description				
Course title	Heat Turbines			
Study programme	Graduate University Study of Mechanical Engineering			
Course status	optional			
Year	1.			
ECTS credits and	ECTS student 's workload coefficient	5		
teaching	Number of hours (L+E+S)	45+30+0		

1.1. Course objectives

Assuming of theoretical knowledge and developing of skills to solve practical problems in the field of steam and gas turbines for performing numerical analysis and design of turbines, its parts and systems.

1.2. Course enrolment requirements

None.

1.3. Expected course learning outcomes

Description and analysis of the thermal process in steam turbine plant. Analysis of the steam turbines processes. Analysis of the flow in turbine nozzles and blades. Description and comparison of the energy conversion process action and the reaction turbine stages. Identification and analysis of the flow losses in turbine stages. Analysis of the turbine stage and turbines efficiency. Performing the thermodynamic calculations of the turbine and the turbine stage. Analysis of the variations of turbine operating modes. Description and analysis of the basic design concept of steam turbines. Description of the basic design of gas turbines, components and systems. Combined systems of gas and steam turbines. Description and analysis of the turbine. Modern turbine maintenance description and analysis. Calculate and analyze the losses of steam and gas turbines.

1.4. Course content

Overview of the development of steam turbines and directions for their further development. Thermal process of the steam turbine. Basic techno-economic indicators of a steam turbine plants. Classification and applications of steam turbines. Thermal process in the turbine stage. Basically calculation and design of turbine stages. Thermal process in multistage turbine. Steam turbines in nuclear power plants. Condenser. Structural characteristics and strength calculation of turbine parts. Design of modern steam turbines for different purposes. Control and protection systems of steam turbines. Lubricating and control oil system of steam turbine. Gas turbine plants. The development of gas turbines. The basics of gas-turbine plants. Characteristics of the design of modern gas turbines. Control and protection systems for gas turbines. Combined and cogeneration plants. Operation and maintenance of the turbines. Marine steam and gas turbines. Energy and exergy analysis of steam and gas turbines.

1.5. Teaching methods	 lectures seminars and workshops exercises long distance education fieldwork 	 individual assignment multimedia and network laboratories mentorship other
1.6. Comments	None	
1.7. Student's obliga	tions	

Course attendance, activity, homework, studying.

1.8. Evaluation of student's work

2101 2101000	011 05 011					
Course attendance	2.5	Activity/Participation		Seminar paper	Experimental work	
Written exam	0.5	Oral exam	0.5	Essay	Research	
Project	0.5	Sustained knowledge check	1	Report	Practice	
Portfolio		Homework				

1.9. Procedure and examples of learning outcome assessment in class and at the final exam

Course attendance, activity, homework, continuous knowledge testing (two mid-term exams), written and oral exam.

1.10. Assigned reading (at the time of the submission of study programme proposal)

Miler, J.: Steam and Gas Turbines, Parts I & II, Tehnička knjiga, Zagreb 1955. i 1965. (in Croatian) Kostjuk, A. G., Frolov, V. V.: Steam and Gas Turbines, Mir Publishers, Moscow, 1988.

Shlyakhin, P.: Steam Turbines – Theory and Design, University Press of the Pacific, Honolulu, Hawaii, 2005. Kanoglu, M., Cengel, Y. A., Dincer, I.: Efficiency Evaluation of Energy Systems, SpringerBriefs in Energy, Springer, 2012.

1.11. Optional / additional reading (at the time of proposing study programme)

Leyzerovich , A. S.: Steam Turbines for Modern Fossil-Fuel Power Plants , The Fairmont Press , 2008. Bloch, H. P., Singh, M. P.: Steam Turbines - Design, Applications, and Rerating , The McGraw-Hill Companies, Inc. , 2009.

Elčić, Z.: Parne Turbine, Nacionalna i sveučilišna biblioteka, Zagreb, 1995.

Kitto, J. B., Stultz, S. C.: Steam/its generation and use, 41st edition, The Babcock & Wilcox Company, Ohio, 2005.

Woodruff, E. B., Lammers, H. B., Lammers, T. F.: Steam plant operation, The McGraw-Hill Companies, Inc., 2005.

Sutton, I.: Plant Design and Operations, Elsevier Inc., 2015.

Sarkar, D. K.: Thermal Power Plant - Design and Operation, Elsevier Inc., 2015.

Tanuma , T.: Advances in Steam Turbines for Modern Power Plants , Woodhead Publishing ,Elsevier Ltd. , 2017.

1.12. Number of assigned reading copies with regard to the number of students currently attending the course

Title	Number of copies	Number of students
Miler, J.: Steam and Gas Turbines, Parts I & II, Tehnička knjiga, Zagreb 1955. i 1965. (in Croatian)	2	50
Kostjuk, A. G., Frolov, V. V.: Steam and Gas Turbines, Mir Publishers, Moscow, 1988.	1	50
Shlyakhin, P.: Steam Turbines – Theory and Design, University Press of the Pacific, Honolulu,Hawaii, 2005.	1	50
Kanoglu, M., Cengel, Y. A., Dincer, I.: Efficiency Evaluation of Energy Systems, SpringerBriefs in Energy, Springer, 2012.	1	50

1.13. Quality monitoring methods which ensure acquirement of output knowledge, skills and competences

Basic description				
Course title	Industrial Robotics			
Study programme	Graduate University Study of Mechanical Engineering			
Course status	optional			
Year	2.			
ECTS credits and	ECTS student 's workload coefficient	5		
teaching	Number of hours (L+E+S)	30+30+0		

1.1. Course objectives

This course provides introduction to the kinematics and dynamics of robots and robotic systems. The acquisition of specific skills in programming and simulation of robots and robotic systems.

1.2. Course enrolment requirements

None.

1.3. Expected course learning outcomes

Define the concept of robot and robotics and robot configuration. Analyze mechanical and control systems. Explain the kinematics and dynamics of robots. Analyze nonlinear robot control. Explain planning and intelligent control. Apply robotic programming languages. Explain off-line programming systems. Apply software in simulation and programming of industrial robots. Give examples of the use of robots in production processes and industrial material handling. Analyze mobile, flexible and parallel connected robots. Explain telepresence and virtual reality.

1.4. Course content

Definition of robotics and robots as systems. Robot configuration. End effectors. Mechanics and control of robots. Sensors and actuators. Spatial description and transformation: position, orientation and quadrants. Mapping: change descriptions from quadrant to quadrant. Operators: translation, rotation, transformation. Robot kinematics. Robot dynamics and control. Nonlinear robot control: nonlinear and time-varying systems, multi-input, multi-output control systems. Planning and intelligent management. Robotic vision systems: complex and smart systems. Robotic programming languages and systems: coding examples in three programming languages. Off-line programming systems. Application of robots in production. Application of robots in production processes and industrial material manipulation. Mobile, flexible and parallel robots. Telepresence and virtual reality. Introduction to modern software for simulation and programming of industrial robots.

	exercises	ps 🗍 multim 🔀 laborat	edia and network ories		
1.6. Comments					
1.7. Student's obligations					
Attendance, activities in the classroom, homework and self-study.					
1.8. Evaluation of student's work					
2	Activity/Participation	Seminar paper	Experimental		
	obliga ties in t n of stu	seminars and worksho	seminars and workshops multim exercises laborat long distance education mentor fieldwork other ts obligations ties in the classroom, homework and self-study. n of student's work	seminars and workshops exercises long distance education fieldwork obligations ties in the classroom, homework and self-study. n of student's work	

attendance					work	
Written exam	1.5	Oral exam		Essay	Research	
Project	0.5	Sustained knowledge check	1	Report	Practice	
Portfolio						

Oral explanation of simulation exercises or project task, continuous knowledge test (two control tasks), written final exam.

1.10. Assigned reading (at the time of the submission of study programme proposal)

B. Siciliano, K. Oussama: Springer handbook of robotics. Springer, 2016.

1.11. Optional / additional reading (at the time of proposing study programme)

L. W. Tsai: Robot analysis: the mechanics of serial and parallel manipulators. John Wiley & Sons, 1999.

L. T. Ross, S. W. Fardo, M. F. Walach: Industrial Robotics, The Goodheart-Willcox Company, 2008.

Z. Kovačić, S. Bogdan, V. Krajčí: Osnove robotike, Graphis, Zagreb, 2002.

F. Lamb: Industrial automation: hands-on. McGraw-Hill Education, 2013.

1.12. Number of assigned reading copies with regard to the number of students currently attending the course

Title	Number of copies	Number of students
B. Siciliano, K. Oussama: Springer handbook of robotics. Springer, 2016.	1	
1.13. Quality monitoring methods which ensure acqu competences	irement of output ki	nowledge, skills and

Basic description				
Course title	Internal Combustion Engines			
Study programme	Graduate University Study of Mechanical Engineering			
Course status	optional			
Year	2.			
ECTS credits and	ECTS student 's workload coefficient	5		
teaching	Number of hours (L+E+S)	45+30+0		

1.1. Course objectives

Assuming of theoretical knowledge and developing of skills to solve practical problems in the field of internal combustion engines for performing numerical analysis and design of engines, its parts and systems.

1.2. Course enrolment requirements

None.

1.3. Expected course learning outcomes

Application of the mechanics and the theory of vibration to the cranking mechanism in analyzing the kinematics, dynamics, loads and vibrations of the cranking mechanism. Application of the laws of thermodynamics and fluid mechanics to processes in internal combustion engines. Analysis of the processes in internal combustion engine and its equipments and its impact to the characteristics of the engine as a whole in steady and transient operation. Applications of the laws of thermodynamics and fluid mechanics to change the working fluid exchange and cylinder filling. Analysis of fuel/air mixture preparation and combustion in the engine. Thermal load analysis of the engine parts and structures. Analysis of the processes of pollutants formation and reduction controll for environment protection.

1.4. Course content

Introduction. Engines division. Historical development. Basic dimensions of the engine and cranking mechanism. Kinematics and dynamics of the cranking mechanism. The dynamics of multi-cylinder engines. Balancing of engine mechanism. Fuels and their properties. Fuel mixture. Engine thermodynamic processes. Mathematical modelling of engine real processes and numerical simulations. Indicating the engine process, measuring of engine power and other characteristics. Exchange of the working fluid. Supercharging and turbocharging. Preparation of the combustible mixture. Introduction to combustion. Ignition and combustion of the fuel/air mixture. The pollutants emission and measures for their reduction. The design of the engine. Auxiliary equipment and engine systems. Engine control and protection systems.

1.5. Teaching methods	 lectures seminars and workshop exercises long distance education fieldwork 	laboratories			
1.6. Comments	1.6. Comments None				
1.7. Student's obligations					
Course attendance, activity, homework, studying.					
1.8. Evaluation of student's work					
Course 2	5 Activity/Participation	Seminar paper Experimental			

				work	(
Written exam	Oral exam	1	Essay	Rese	arch	
Project	Sustained knowledge check	1.5	Report	Pract	tice	
Portfolio	Homework					
1.9. Procedure	e and examples of learning outco	ome asse	ssment in class and	l at the final	exam	
Course attendance	e, continuous knowledge testing	g (two mi	d-term exams), wri	tten or oral e	exam.	
1.10. As.	signed reading (at the time of t	he subm	ission of study prog	ramme prop	oosal)	
	ernal Combustion Engine Funda al Combustion Engines, Univerza)	
1.11. Op	ntional / additional reading (at t	he time o	of proposing study p	programme)		
leras, D.: Internal (nternal Combustion ENgines, Sv Combustion Engines - Devices, Š	kolska k	njiga, Zagreb, 1995.	(in Croatian)	
	Imber of assigned reading co the course	pies wit	h regard to the	number of	students cur	rentl
	Title		Number	of copies	Number o students	-
Heywood, J. B.: Int McGraw Hill Book	ernal Combustion Engine Funda Co., 1988.	amentals		L	30	
leras, D.: Internal (Zagreb, 1995. (in C	Combustion Engines - Devices, Š Troatian)	kolska k	njiga,	L	30	
1.13. Qu	ality monitoring methods whi	ich ensu	e acquirement oj	f output kno	owledge, skill	s an

Basic description				
Course title	Joining of Materials			
Study programme	Graduate University Study of Mechanical Engineering			
Course status	optional			
Year	1.			
ECTS credits and	ECTS student 's workload coefficient	4		
teaching	Number of hours (L+E+S)	30+15+0		

1.1. Course objectives

The course is designed to provide the student with knowledge in joining of materials and welding engineering topics. Student is introduced with practical application of several welding processes.

1.2. Course enrolment requirements

None.

1.3. Expected course learning outcomes

Classify methods of joining of materials. Describe the basic welding processes and classify welding power sources. Interpret characteristics of arc and mechanisms of formation of the welded joint. Explain weldability and describe the specifics of welding alloy steel, cast iron, aluminum and copper alloys. Classify welding consumables and types of welds. Calculate power requirements for welding and consumption of welding consumables for arc welding. Classify errors in welding and describe methods for quality assurance of welding.

1.4. Course content

Methods of joining of materials. Development of welding processes. Arc welding. Power source equipment. Welding metallurgy. Microstructure of welded joints. Heat affected zone. Weldability. Welding of alloys. Welding symbols. Welding consumables. Productivity of welding. Quality of welds. Welds imperfections. Inspections of welds. Solid state joining of metals. Joining processes by diffusion, friction, explosion and ultrasound vibration. Bonding. Brazing and soldering. Thermal spraying.

	🔀 lectures	individual assignment
1.5. Teaching	seminars and workshops	multimedia and network
1.5. reaching methods	🔀 exercises	laboratories
methous	Iong distance education	mentorship mentorship
	🔀 fieldwork	other

1.6. Comments

1.7. Student's obligations

Course attendance, active participation in the course, attendance at on-site training and independent learning.

1.8. Evaluation of student's work						
Course attendance1.5Activity/ParticipationSeminar paperExperimental work						
Written exam	0.5	Oral exam		Essay	Research	
Project		Sustained knowledge check	1.5	Report	Practice	

Portfolio	Fieldwork 0.	5			
1.9. Procedu	re and examples of learning outcome o	assessment in a	class and at the find	al exam	
Sustained knowle	edge check and final written exam.				
1.10. A	ssigned reading (at the time of the su	bmission of stu	udy programme pro	oposal)	
Meden, G., i dr.:	Osnove zavarivanja, Sveučilište u Rijec	i, Tehnički fakı	ultet, Rijeka, 2000.		
1.11. C	Optional / additional reading (at the tin	ne of proposin	g study programme	?)	
Gojić, M.: Tehnik Messler, R. W.: Jo 1.12.	an, W. D.: Joining processes, John Wile e spajanja i razdvajanja materijala, Sve pining of Materials and Structures, Else lumber of assigned reading copies g the course	učilište u Zagr vier Buterwor	ebu, Metalurški fak th-Heinemann, 200)4. f students currently	
	Title		Number of copies	Number of students	
Meden, G., i dr.: Osnove zavarivanja, Sveučilište u Rijeci, Tehnički 12 -					

1.13. Quality monitoring methods which ensure acquirement of output knowledge, skills and competences

Basic description					
Course title	Laboratory Excercises A				
Study programme	Graduate University Study of Mechanical Engineering				
Course status	optional	optional			
Year	2.				
ECTS credits and	ECTS student 's workload coefficient 5				
teaching	Number of hours (L+E+S)	Number of hours (L+E+S) 15+30+0			

1.1. Course objectives

To make a plan through the testing process. Critically evaluation the obtained measurement results. To acquire skills for teamwork.

1.2. Course enrolment requirements

None.

1.3. Expected course learning outcomes

Explain and classify the different measurements in the field of construction and transportation techniques. Distinguish measurement devices from areas of construction and transportation techniques. Plan through the testing process. Implement treated measurement techniques. Critically evaluate the obtained measurement results. Writing and orally presentation the results and their evaluation. Team work and oral and written communication with experts in these areas.

1.4. Course content

Theoretical and practical setting performance measurements on field courses in elective group "Construction and Transport technology." Special attention will be addressed to measurement techniques in the field of: roughness, photoelastic, industrial acoustics, hydraulics, electronics, stroboscopy and tensometry.

	🔀 lectures	🗌 individual assignment
1.5. Teaching	seminars and workshops	multimedia and network
nethods	🔀 exercises	🔀 laboratories
methous	Iong distance education	mentorship mentorship
	🗌 fieldwork	other
16 Comments		

- 1.6. Comments
- 1.7. Student's obligations

Course attendance, class participation, laboratory exercises, homework (essays) and independent study

1.8. Evaluation of student's work

Course attendance	1.5	Activity/Participation	Seminar paper	2	Experimental work	
Written exam	0.5	Oral exam	Essay		Research	
Project		Sustained knowledge check	Report		Practice	1
Portfolio		Homework				

1.9. Procedure and examples of learning outcome assessment in class and at the final exam

Attendance, activity in the laboratory, writing and defense of the seminar work, final exam.

1.10. Assigned reading (at the time of the submission of study programme proposal)

Specifically, for each type of laboratory exercises.

1.11. Optional / additional reading (at the time of proposing study programme)

1.12. Number of assigned reading copies with regard to the number of students currently attending the course

	Title	Number of copies	Number of students
1 1 3	Quality monitoring methods which ensure	acquirement of output l	nowledge skills and

1.13. Quality monitoring methods which ensure acquirement of output knowledge, skills and competences

Basic description					
Course title	Laboratory Exercises B	Laboratory Exercises B			
Study programme	Graduate University Study of Mechanical Engineering				
Course status	optional	optional			
Year	2.	2.			
ECTS credits and	ECTS student 's workload coefficient 5				
teaching	Number of hours (L+E+S)	Number of hours (L+E+S) 15+30+0			

1.1. Course objectives

Competences in appropriate choice and usage of measurement instrumentation and methods in mechatronics systems. Team work and capability to communicate with experts.

1.2. Course enrolment requirements

None.

1.3. Expected course learning outcomes

Explain, classify and compare the methods of measurement of the physical quantities in the field of mechatronics and robotics. Distinguish and characterise the measurement devices in this field. Plan the execution of measurements. Implement the treated measurement techniques. Critically evaluate the obtained measurement results. Present results and their validation in written and oral form. Teamwork and written and oral communication with experts in this and other fields.

1.4. Course content

Theoretical foundations and practical execution of measurements in the field of the topics covered by the courses in the electoral graduate courses group "Mechanical Engineering Design and Mechatronics". Special attention will be dedicated to measurement techniques in the fields of: measurement of high-precision displacements and vibrations, micro- and nanosystems technologies, determination of mechanical properties of materials, electrical engineering, control systems and usage of artificial intelligence, robotics and hydraulics.

	🔀 lectures	🔀 individual assignment
1.5. Teaching	seminars and workshops	multimedia and network
1.3. Teaching methods	🔀 exercises	🔀 laboratories
methous	Iong distance education	🗌 mentorship
	🗌 fieldwork	Other

1.6. Comments

1.7. Student's obligations

Course attendance, activity, laboratory exercises, homework assignments (seminar papers) and autonomous study.

Study.							
1.8. Evaluation of student's work							
Course attendance1.5Activity/ParticipationSeminar paper1.5Experimental work							
Written exam		Oral exam	0.5	Essay		Research	
Project		Sustained knowledge check		Report		Practice	

1.5

Portfolio				

Active participation to classes, laboratory exercises and homework assignments (seminar papers) and oral checks on acquired knowledge.

1.10. Assigned reading (at the time of the submission of study programme proposal)

***: "The Mechatronics Handbook" – 2nd ed., ed. R.H. Bishop, CRC Press, Boca Raton (FL, USA), 2007.
C. W. de Silva: "Mechatronics – An Integrated Approach", CRC Press, Boca Raton, (FL, USA), 2005.
S. Zelenika, E. Kamenar: "Precision Engineering and Micro- and Nanosystems Technologies – Precision Engineering", University of Rijeka – Faculty of Engineering, Rijeka (HR), 2015. (in Croatian)

1.11. Optional / additional reading (at the time of proposing study programme)

R. M. Schmidt, G. Schitter, A. Rankers, J van Eijk: "The Design of High Performance Mechatronics" - 2nd ed., Delft University Press, 2014.

A. H. Slocum: "Precision Machine Design", Society of Manufacturing Engineers, Dearborn (MI, USA), 1992.

1.12. Number of assigned reading copies with regard to the number of students currently attending the course

Title	Number of copies	Number of students
***: "The Mechatronics Handbook" – 2 nd ed., ed. R.H. Bishop, CRC Press, Boca Raton (FL, USA), 2007.	1	10
C. W. de Silva: "Mechatronics – An Integrated Approach", CRC Press, Boca Raton, (FL, USA), 2005.	1	10
S. Zelenika, E. Kamenar: "Precision Engineering and Micro- and Nanosystems Technologies – Precision Engineering", University of Rijeka – Faculty of Engineering, Rijeka (HR), 2015. (in Croatian)	5	10
R. M. Schmidt, G. Schitter, A. Rankers, J van Eijk: "The Design of High Performance Mechatronics" - 2 nd ed., Delft University Press, 2014.	1	10
A. H. Slocum: "Precision Machine Design", Society of Manufacturing Engineers, Dearborn (MI, USA), 1992.	1	10

1.13. Quality monitoring methods which ensure acquirement of output knowledge, skills and competences

Via the institutionalised quality assurance system of the Faculty of Engineering. Constant interaction and work with the students with the aim of improving the quality of teaching.

Basic description						
Course title	Laboratory Practice in Thermal Engineering	Laboratory Practice in Thermal Engineering				
Study programme	Graduate University Study of Mechanical Engineering					
Course status	optional	optional				
Year	1.					
ECTS credits and	ECTS student 's workload coefficient	5				
teaching	Number of hours (L+E+S)					

1.1. Course objectives

Assuming theoretical knowledge and development of practical skills in organizing and performing measurements and presenting the results of experimentation.

1.2. Course enrolment requirements

None.

1.3. Expected course learning outcomes

Description of measurement and data acquisition systems. Description of sensors and ways of performing measurements of temperature, pressure, fluid flow velocity, mass flow, noise level and air humidity. Description of complex measurements for determination of thermal conductivity of insulation and constructive materials, caloric values of solid and gaseous fuels, characteristic features and fuel consumption of engines with internal combustion, composition of produced flue gas by combustion, mechanical properties of materials, detection of surface and internal material defects. Planning and performance of experiments. Analysis and comparison of measurement results.

1.4. Course content

Planning of experiments. Setting and calibration of sensors. Measurement and data acquisition. Dynamic behavior of sensors. Analysis and processing of experimental data. Reporting and presentation of results. Pressure measurements. Temperature measurements. Determination of heating values of gaseous and solid fuels. Humidity and velocity measurements in air flow. Mass flow measurements. Thermal conductivity measurements. Combustion flue gas measurements. Noise measurements. Mechanical testing and testing of internal defects in materials. Motor braking and fuel consumption measurements.

1.5. Teaching method		 lectures seminars and workshop exercises long distance education fieldwork 	s 🗌 multim 🔀 laborat		
1.6. Commer	nts	-			
1.7. Student	's obliga	tions			
Course attendance, activity, homework - measurement reports preparation, studying.					
1.8. Evaluation of student's work					
Course	1.5	Activity/Participation	Seminar paper	Experimental	

attendance						work		
Written exam	Oral exam	0.5	Essay			Research	ı	
Project	Sustained knowledge check	2	Report		1	Practice		
Portfolio	Measurement reports							
1.9. Procedure a	nd examples of learning outco	me ass	essment i	n class and	l at the	e final exa	т	
Measurement report	preparation, sustained knowl	edge cł	heck (thre	e mid-terr	n exan	ns), oral ex	xam.	
1.10. Assig	ned reading (at the time of th	ne subm	nission of	study prog	ramm	e proposa	I)	
Delač, B., Blecich, P.,	Dragičević, V., Vrcan, Ž., Iljkić,	D., Buk	kovac, .O:	Laborator	y pract	ice in the	rmal	
engineering, (lecture	s), https://moodle.srce.hr							
1.11. Optic	onal / additional reading (at th	e time	of propos	ing study p	orogra	mme)		
Figliola, R. S.,Beasley New York, 2000.	, D. E.:Theory and Design for N	/lechan	ical Meas	urements,	(book)), John Wi	ley & Sor	ıs,
Holman, J.P., Gajda,	Design and Analysis of Experim W.J.: Experimental Methods fo		-					vrk,
Holman, J.P., Gajda, 1989.		or Engin	neers, (bo	ok), Mc Gr	aw-Hil	Book Co.	, New Yo	-
Holman, J.P., Gajda, 1989.	W.J.: Experimental Methods for ber of assigned reading cop	or Engin	neers, (bo	ok), Mc Gr	aw-Hil	Book Co.	, New Yo	-
Holman, J.P., Gajda, V 1989. 1.12. Num	W.J.: Experimental Methods for ber of assigned reading cop	or Engin	neers, (bo	ok), Mc Gr	aw-Hill numb	l Book Co. er of stu	, New Yo	of
Holman, J.P., Gajda, V 1989. 1.12. Num attending th	W.J.: Experimental Methods for ber of assigned reading cop be course	or Engin	heers, (bo	ok), Mc Gr	aw-Hill numb	l Book Co. er of stu	, New Yo dents cu Number	of
Holman, J.P., Gajda, V 1989. <i>1.12. Num</i> <i>attending th</i> Delač, B., Blecich, P.,	W.J.: Experimental Methods for ber of assigned reading cop ne course Title	or Engin <i>Dies wit</i>	heers, (bo	ok), Mc Gr	aw-Hill numb of cop	l Book Co. er of stu	, New Yo dents cu Number	of
Holman, J.P., Gajda, V 1989. <i>1.12. Num</i> <i>attending th</i> Delač, B., Blecich, P., O.: Laboratory practi	W.J.: Experimental Methods fo ber of assigned reading cop ne course Title Dragičević, V., Vrcan, Ž., Iljkić, ce in thermal engineering, (leo	or Engin <i>Dies wit</i>	heers, (bo	ok), Mc Gr	aw-Hill numb	l Book Co. er of stu	, New Yo dents cu Number	of
Holman, J.P., Gajda, V 1989. <i>1.12. Num</i> <i>attending th</i> Delač, B., Blecich, P.,	W.J.: Experimental Methods fo ber of assigned reading cop ne course Title Dragičević, V., Vrcan, Ž., Iljkić, ce in thermal engineering, (leo	or Engin <i>Dies wit</i>	heers, (bo	ok), Mc Gr	aw-Hill numb of cop	l Book Co. er of stu	, New Yo dents cu Number	of
Holman, J.P., Gajda, V 1989. <i>1.12. Num</i> <i>attending th</i> Delač, B., Blecich, P., O.: Laboratory practi	W.J.: Experimental Methods fo ber of assigned reading cop ne course Title Dragičević, V., Vrcan, Ž., Iljkić, ce in thermal engineering, (leo	or Engin <i>Dies wit</i>	heers, (bo	ok), Mc Gr	aw-Hill numb of cop	l Book Co. er of stu	, New Yo dents cu Number	rrentl of
Holman, J.P., Gajda, V 1989. <i>1.12. Num</i> <i>attending th</i> Delač, B., Blecich, P., O.: Laboratory practi https://moodle.srce.	W.J.: Experimental Methods for ber of assigned reading cop ne course Title Dragičević, V., Vrcan, Ž., Iljkić, ce in thermal engineering, (leo hr	D., Buktures),	th regard	ok), Mc Gr to the Number unlin	aw-Hill numb of cop	I Book Co.	, New Yo dents cu Number student	of ts

Basic description				
Course title	Machining Processes			
Study programme	Graduate University Study of Mechanical Eng	ineering		
Course status	optional			
Year	1.			
ECTS credits and	ECTS student 's workload coefficient	5		
teaching	Number of hours (L+E+S)	30+30+0		

1.1. Course objectives

Acquisition of theoretical knowledge and training for analytical modeling of cutting force and temperature, experimental modeling of machinability functions, conducting analysis of economic aspects of metal cutting, performing calculations and specifying optimal cutting parameters.

1.2. Course enrolment requirements

None.

1.3. Expected course learning outcomes

To interpret the physical foundamentals of cutting theory. To apply the analytical and experimental modeling of cutting process. To analyze the economic aspects of cutting process, to assess the influencing factors and to set the appropriate mathematical formulation of the production efficiency optimization problem. To apply the tool life equation for the calculation and specification of optimal cutting parameters. To identify and to describe the high speed machining, turn-milling, hard machining and gear machining. To identify and to describe the alternative cooling and / or lubrication techniques for environmentally friendly (sustainable) metal cutting.

1.4. Course content

Fundamentals of cutting theory. Physically based modeling of the cutting process: models of cutting force and cutting temperature. Static and dynamic deformations in cutting: models. Economic aspects of cutting: models of tool wear and tool life, and the cutting process optimization models. Tool condition monitoring systems: examples of industrial application. Experimentally based modeling of the cutting process and optimization: statistical methods (single and multiple linear regression analysis, analysis of variance, Taguchi method, gray relational analysis and Taguchi entropy-gray relational analysis) and evolutionary algorithms. Integrity of the machined surface: models. High speed machining. Sustainability of metal machining. Turn-milling. Hard machining. Gear machining.

1.5. Teaching methods Iectures individual assignment 1.5. Teaching methods seminars and workshops Individual assignment 1.5. Teaching methods exercises Iaboratories Iong distance education mentorship other 1.6. Comments 1.7. Student's obligations other 1.7. Student's obligations Course attendance, control tasks, preparation of seminar, independent learning. 1.8. Evaluation of student's work Course attendance	mining. Hard machining. Ocar machining.							
1.7. Student's obligations Course attendance, control tasks, preparation of seminar, independent learning. 1.8. Evaluation of student's work	-		Seminars and worksho	ops	<pre> multime laborato mentors </pre>	dia a ries	-	
Course attendance, control tasks, preparation of seminar, independent learning. 1.8. Evaluation of student's work	1.6. Comment	ts						
1.8. Evaluation of student's work	1.7. Student's	obliga	tions					
	Course attendance, control tasks, preparation of seminar, independent learning.							
Courses 2 Activity (Deuticipation Coursing and a Function state	1.8. Evaluation of student's work							
Course 2 Activity/Participation Seminar paper 1 Experimental	Course	2	Activity/Participation	Seminar p	aper	1	Experimental	

attendance						work	
Written exam	1	Oral exam		Essay		Research	
Project		Sustained knowledge check	1	Report		Practice	
Portfolio		Report of laboratory work					
1.9. Procedure and examples of learning outcome assessment in class and at the final exam							
Course attendance, sustained knowledge check, seminar paper, written and / or oral exam.							
1.10. Assigned reading (at the time of the submission of study programme proposal)							
Cukor, G.: Metal Cutting, internal script, Tehnički fakultet Sveučilišta u Rijeci, 2021. (in Croatian)							

1.11. Optional / additional reading (at the time of proposing study programme)

Shaw, M.C.: Metal Cutting Principles, 2nd ed., Oxford University Pres, Inc., 2005.

1.12. Number of assigned reading copies with regard to the number of students currently attending the course

Title	Number of copies	Number of students
Cukor, G.: Metal Cutting, internal script, Tehnički fakultet Sveučilišta u Rijeci, 2021. (in Croatian)	50	24

1.13. Quality monitoring methods which ensure acquirement of output knowledge, skills and competences

Basic description					
Course title	Maintenance				
Study programme	Graduate University Study of Mechanical Engi	neering			
Course status	optional	optional			
Year	1.				
ECTS credits and	ECTS student 's workload coefficient	5			
teaching	Number of hours (L+E+S)	30+15+0			

1.1. Course objectives

Assuming theoretical knowledge and develop skills to solve practical problems in the field of Maintenance Engineering systems, and training for the design of the organization, design technologies, as well as planning and managing maintenance tasks.

1.2. Course enrolment requirements

None.

1.3. Expected course learning outcomes

Define and describe the main functions and tasks of maintenance. Describe and analyse maintenance strategies. Define and describe availability and reliability of technical systems. Identify and describe methods of technical diagnostics. Describe and analyse maintenance technology, organization and management of maintenance activities and tasks.

1.4. Course content

The importance and function of maintenance of technical systems. The historical development, characteristics and scope of application of different applied maintenance strategies. Maintenance strategy selection. Availability and reliability of technical systems. Design technology maintenance. The methods of technical diagnostics and monitoring of technical systems. Planning inspection, repairs and costs of production, procurement and storage of parts and assemblies for maintenance. Organization of maintenance functions, and information systems to support the process of maintenance management.

	🔀 lectures	🔀 individual assignment
1.5. Teaching	seminars and workshops	multimedia and network
	🔀 exercises	laboratories
methods	Iong distance education	mentorship mentorship
	🔀 fieldwork	other

1.6. Comments

_

1.7. Student's obligations

. ..

Class attendance and activity, independent learning. c

1.8. Evaluation of student's work							
Course attendance	1.5	Activity/Participation		Seminar paper	1	Experimental work	
Written exam	0.5	Oral exam		Essay		Research	
Project		Sustained knowledge check	2	Report		Practice	
Portfolio							

Class attendance and activity, seminar paper, continuous knowledge assessment, and written examination.

1.10. Assigned reading (at the time of the submission of study programme proposal)

Majdandžić, N.: Maintenance Strategies and Information Systems of Maintenance, Strojarski fakultet u Slavonskom Brodu, Slavonski Brod, 1999. (in Croatian)

Sebastijanović, S.: Basics of Engineering Construction Maintenance, Strojarski fakultet u Slavonskom Brodu, Slavonski Brod, 2002. (in Croatian)

Čala, I.: Equipment Maintenance, Inženjerski priručnik 4, sv.3, Školska knjiga, Zagreb, 2002. (in Croatian)

1.11. Optional / additional reading (at the time of proposing study programme)

Dhillon, B.S.: Engineering Maintenance – A Modern Approach, CRC Press, USA, 2002.

Nyman, D. & Levitt, J.: Maintenance Planning, Coordination & Scheduling, 2nd edition, Industrial Press, 2010. Palmer, R.D.: Maintenance Planning and Scheduling Handbook, 4th edition, Mc Graw-Hill, 2019.

1.12. Number of assigned reading copies with regard to the number of students currently attending the course

Title	Number of copies	Number of students
Majdandžić, N.: Maintenance Strategies and Information Systems of Maintenance, Strojarski fakultet u Slavonskom Brodu, Slavonski Brod, 1999. (in Croatian)	1	14
Sebastijanović, S.: Basics of Engineering Construction Maintenance, Strojarski fakultet u Slavonskom Brodu, Slavonski Brod, 2002. (in Croatian)	2	14
Čala, I.: Equipment Maintenance, Inženjerski priručnik 4, sv.3, Školska knjiga, Zagreb, 2002. (in Croatian)	2	14

1.13. Quality monitoring methods which ensure acquirement of output knowledge, skills and competences

Basic description					
Course title	Marine Deck Machinery				
Study programme	Graduate University Study of Mechanical Engir	neering			
Course status	optional				
Year	2.				
ECTS credits and	ECTS student 's workload coefficient	5			
teaching	Number of hours (L+E+S) 30+30+0				

1.1. Course objectives

Acquiring knowledge and skills about topics related to marine deck machinery. The development of the ability to calculate, design and apply marine deck machinery on ships, using modern materials and taking into consideration demands regarding reliability, safety, quality, cost, ecology, ergonomics, engineering ethics, etc.

1.2. Course enrolment requirements

None.

1.3. Expected course learning outcomes

Explain term, purpose, classification, application and historical development of marine deck machinery. Explain and define cargo handling equipment on ships: marine cargo cranes, derricks, cargo winches, cranes for tankers and provision handling and service cranes. Explain standards and service classes of hoisting appliances. Explain and define classification and characteristics of transportational materials. Explain and define anchor handling equipment (anchor, anchor chain, chain stoppers, anchor winch), mooring winches, capstans, fishing winches, winches and winch equipment for offshore and harbour tugs, life saving equipment (lifeboats, lifeboat devices), hatch covers, accommodation ladder, pilot ladder and container handling equipment. Understand the importance of using ecology and engineering ethics in design and application of marine deck machinery. Apply acquired knowledge in design and application of marine deck machinery.

1.4. Course content

Introduction. Ship transport of materials and people. Historical development. The importance and place of ship transport in the modern world economy. Basic concepts, application, divisions and characteristics of marine deck machinery.

Elements and devices for material handling: hooks, stirrups, nippers, baskets, grabs, electro-magnets, steel wire ropes, chaines, pulleys, drums, brakes, wheels, rails, motor drives: - principal features, types, purpose, description, calculation and design. Classification and characteristics of transportational materials. Standards and service classes of hoisting appliances.

Cargo handling equipment on ships (marine cargo cranes, derricks, cargo winches, cranes for tankers and provision handling, service cranes): - principal features, types, purpose, description and design.

Anchor handling equipment (anchor, anchor chain, chain stopper, anchor winch), mooring winches, capstans, fishing winches, winches and winch equipment for offshore and harbour tugs, life saving equipment (lifeboats, lifeboat devices), hatch covers, accommodation ladder, pilot ladder, container handling equipment: - principal features, types, purpose, description and design.

Analysis of the importance of using ecology and engineering ethics in design and application of marine deck machinery on ships.

1.5. TeachingIecturesindividual assignment	
--	--

methods		 seminars and workshop exercises long distance education fieldwork 	•		tories	and network	
1.6. Commen	ts						
1.7. Student's	s obliga	tions					
Course attendance	e, activi	ity, solving assigned project	: work,	studying.			
1.8. Evaluatio	on of stu	udent's work					
C a a a a						E station state	

Course attendance	2	Activity/Participation		Seminar paper	Experimental work	
Written exam	0.5	Oral exam		Essay	Research	
Project	1	Sustained knowledge check	1.5	Report	Practice	
Portfolio		Homework				

Course attendance, 2 mid-term exams, project work, final written exam.

1.10. Assigned reading (at the time of the submission of study programme proposal)

Ozretić, V.: Marine Auxiliary Machines and Devices, Split Ship Management Ltd., Split, 1996. (in Croatian)

Ščap, D.: Transport Devices, Fakultet strojarstva i brodogradnje, Zagreb, 2004. (in Croatian) Piršić, T.: Transport in Industry, FESB, Split, 2005. (in Croatian)

1.11. Optional / additional reading (at the time of proposing study programme)

Belamarić, G.: Container Transport Technology, Manual, Pomorski fakultet, Split, 2011. (in Croatian) Herold, Z., Ščap, D., Hoić, M.: Lifting and Handling Equipment, Part 1, Fakultet strojarstva i brodogradnje, Zagreb, 2020. (in Croatian)

Herold, Z., Ščap, D., Hoić, M.: Lifting and Handling Equipment, Part 2, Fakultet strojarstva i brodogradnje, Zagreb, 2020. (in Croatian)

Bowen, R. W.: Engineering Ethics, Springer-Verlag London Limited, 2009.

1.12. Number of assigned reading copies with regard to the number of students currently attending the course

Title	Number of copies	Number of students
Ozretić, V.: Marine Auxiliary Machines and Devices, Split Ship Management Ltd., Split, 1996. (in Croatian)	5	6
Ščap, D.: Transport Devices, Fakultet strojarstva i brodogradnje, Zagreb, 2004. (in Croatian)	1	6
Piršić, T.: Transport in Industry, FESB, Split, 2005. (in Croatian)	1	6
1.13. Quality monitoring methods which ensure acau	urement of output k	nowledge, skills and

1.13. Quality monitoring methods which ensure acquirement of output knowledge, skills and competences

Basic description				
Course title	Marine Electrical Engineering	Marine Electrical Engineering		
Study programme	Graduate University Study of Mechanical Engir	neering		
Course status	optional	optional		
Year	1.			
ECTS credits and	ECTS student 's workload coefficient	4		
teaching	Number of hours (L+E+S)	30+15+0		

1.1. Course objectives

The course is a professional discipline for all the students of naval architecture. The goal is to introduce the students to ships electric devices.

1.2. Course enrolment requirements

None.

1.3. Expected course learning outcomes

Define and explain the requirements for ships electric devices. Evaluate systems for electric power generation on crafts. Evaluate systems for electric power distribution on crafts. Define and explain technical measures for protection from electric current shock. Apply measures for personal safety on work with ships electric power system. Analyse electric protections of ship electric devices. Define and explain ships electric drives. Define and explain ships lighting system.

1.4. Course content

Requirements for ships electric devices. Generation and transformation of electric energy. Distribution and transmission of electric energy. Electric energy consumption on ship. Electric propulsion. Safety. Monitoring, inspection, disturbances and maintenance of ships electric power system.

	🔀 lectures	🗌 individual assignment
1 E Togohing	Seminars and workshops	multimedia and network
1.5. Teaching methods	🔀 exercises	laboratories
methous	Iong distance education	🗌 mentorship
	🗌 fieldwork	other
16 Comments		

- 1.6. Comments
- 1.7. Student's obligations

Course attendance, activity, seminar paper, studying.

1.8. Evaluation of student's work

Course attendance	1.5	Activity/Participation		Seminar paper	0.5	Experimental work	
Written exam	1	Oral exam		Essay		Research	
Project		Sustained knowledge check	1	Report		Practice	
Portfolio							

1.9. Procedure and examples of learning outcome assessment in class and at the final exam

Course attendance, activity, seminar paper, continuous knowledge testing (two mid-term exams), written exam.

1.10. Assigned reading (at the time of the submission of study programme proposal)

I. Vlahinić: Electrical systems of vessels, Faculty of Maritime Studies, Rijeka 1988B. Skalicki, J. Grilec: Marine electrical devicei, Faculty of Mechanical Engineering and Naval Architecture, Zagreb 2000

1.11. Optional / additional reading (at the time of proposing study programme)

D.T. Hall: Practical Marine Electrical Knowledge, Witherby London 1999 IEC International Standard

Croatian Register of Shipping

1.12. Number of assigned reading copies with regard to the number of students currently attending the course

Title	Number of copies	Number of students
I. Vlahinić: Electrical systems of vessels, Faculty of Maritime	3	
Studies, Rijeka 1988		
B. Skalicki, J. Grilec: Marine electrical devicei, Faculty of	3	
Mechanical Engineering and Naval Architecture, Zagreb 2000		
1.12 Ouglitus manitaring mathada subiab arguma aga	winement of autout lu	nouladay abilla and

1.13. Quality monitoring methods which ensure acquirement of output knowledge, skills and competences

Basic description				
Course title	Marine Energy Devices			
Study programme	Graduate University Study of Mechanical Engir	neering		
Course status	optional			
Year	2.			
ECTS credits and	ECTS student 's workload coefficient	5		
teaching	Number of hours (L+E+S)	45+15+0		

1.1. Course objectives

Obtaining theoretical knowledge and develop skills to solve practical problems in the field of marine energy devices and design of marine energy devices.

1.2. Course enrolment requirements

None.

1.3. Expected course learning outcomes

Describe thermodynamic processes of marine steam generator. Describe change of working fluid states in marine steam generator. Describe types of heat exchange in marine steam generator. Define efficiency and explain losses in marine steam generators. Sketch basic configurations of main types of marine steam generators. Explain procedure of marine steam generator heat calculation. Explain stress calculation of marine steam generator main parts under pressure. Calculate main dimensions of marine steam generator. Describe hydrodynamic processes in marine steam generators: working fluid circulation, flow of air and exhaust gases. Define and describe auxiliary systems and equipment of marine steam generators.

1.4. Course content

Generally on marine steam generators. Marine steam propulsion plant. Types, working parameters and main parts of marine steam generators. Thermodynamic processes in marine steam generator. Heat balance, losses, efficiency. Characteristics of fuel oils for marine steam generators. Combustion, combustion control. Steam generator calculation, dimensions of heat transfer surfaces. Water circulation. Flow of air and exhaust gases. Materials and stress calculation of parts under pressure. Automatic control basics. Types and designs of marine steam generators. Parts, equipment, auxiliaries. Failures and damages. Maintenance. Economical running. Marine utilizators. Marine thermal oil heaters. Other marine energy devices.

1.5. Teaching methods	 lectures seminars and worksh exercises long distance educat 	·	multime laborato mentors		
	fieldwork		other		
1.6. Comments	ments				
1.7. Student's obl	1.7. Student's obligations				
Course attendance, ad	ctivity, studying.				
1.8. Evaluation of student's work					
Course 2 attendance	2 Activity/Participation	S	Seminar paper	Experimental work	
Written exam	Oral exam	1 E	Essay	Research	

Project	Sustained knowledge check	2	Report		Practice	
Portfolio	Homework					
1.9. Procedure	and examples of learning outco	me ass	essment in	class and at the	e final exam	
Course attendance,	continuous knowledge testing ((two m	id-term exa	ams), oral or wr	itten exam.	
1.10. Assi	igned reading (at the time of th	e subn	nission of st	udy programm	e proposal)	
Prelec Z.: Marine Sto	eam Generators, Školska knjiga,	, Zagrel	b, 1992. (in	Croatian)		
1.11. Opt	ional / additional reading (at th	e time	of proposir	ng study progra	mme)	
Milton J.H:, Marine	Steam boilers, Newnes-Butterw	vorths,	London, 19	990.		
1.12. Nur attending t	nber of assigned reading cop he course	oies wi	th regard	to the numb	er of students	currently
	Title			Number of cop	IPS	ber of lents
Prelec Z.: Marine Sto (in Croatian)	eam Generators, Školska knjiga,	, Zagre	b, 1992.	5	1	2
	lity monitoring methods whic	h ensu	ire acquir	ement of outp	ut knowledge,	skills and

Basic description				
Course title	Marine HVAC&R Systems			
Study programme	Graduate University Study of Mechanical Engin	eering		
Course status	optional			
Year	2.			
ECTS credits and	ECTS student 's workload coefficient	5		
teaching	Number of hours (L+E+S)	45+30+0		

1.1. Course objectives

Assuming theoretical knowledge and development of skills for practical solving of problems in design and application of process equipment.

1.2. Course enrolment requirements

None.

1.3. Expected course learning outcomes

List the methods of application of refrigeration devices on ships. Calculate the required cooling capacity for the cold store. Show, calculate and analyze thermodynamic processes, distinguish and describe different designs of compression refrigeration devices. Describe the properties of refrigerants and heat transfer substances, compare methods of their application and impact on the environment. Interpret the design and construction of marine refrigeration compressors, evaporators, condensers, expansion valves, fittings and pipelines. Analyze the operating characteristics and method of regulation of crefrigeration systems. Define and describe the requirements for the design of marine ventilation and air conditioning systems. Analyze energy consumption for heating and cooling the ship. Describe and calculate the capacities of the system of natural and forced ventilation, heating, cooling and air conditioning of ship spaces. Interpret the performance and construction of the basic elements of ventilation and air conditioning systems. Distinguish methods of distribution of supply air in space. Define the basic elements and explain the mode of operation of the control of the heating and air conditioning system of the ship. Apply the acquired knowledge to solve practical problems.

1.4. Course content

Application of refrigeration devices on ships. Calculation of refrigeration load for cooling ship warehouses and cargo. Thermodynamic processes and designs of compression refrigeration devices. Refrigerants. Fundamentals of operation and construction characteristics of refrigeration compressors, evaporators and condensers. Expansion cvalves, piping and fittings. Control of cooling systems.

Requirements for the design of marine ventilation and air conditioning systems. Natural and forced ventilation. Partial air conditioning and air conditioning systems. Calculations of effects and energy consumption for heating, cooling and air conditioning on ships. Air treatment units. Heaters and coolers, water and steam humidifiers, filters, fans. Waste air heat recovery systems. Air distribution in space. Air inlet and outlet openings. Air flow regulators. Noise attenuators. Calculation and selection of elements of ventilation and air conditioning systems. Control of heating, cooling and air conditioning systems. An elective project from the course content is planned.

-	1.5. Teaching methods Iectures Image: Seminars and workshops Image: Seminars and workshops Image: Seminars and workshops Image: Seminars and workshops			 individual assignment multimedia and network laboratories mentorship other 				
1.6. Commen	ts	-						
1.7. Student's	s obliga	tions						
Course attendanc	e, activi	ity, homework, studying.						
1.8. Evaluatio	on of stu	udent's work						
Course attendance	2.5	Activity/Participation		Semina	ir paper	Exp wor	erimental k	
Written exam	0.5	Oral exam	0.5	Essay		Res	earch	
Project		Sustained knowledge check	1.5	Report		Prac	ctice	
Portfolio								
1.9. Procedur	e and e	xamples of learning outcon	ne ass	essment	in class and at	the fina	l exam	
Activity, continuo	us knov	vledge testing (two mid-ter	m exa	ms), writ	ten and oral e	xam.		
1.10. A.	ssigned	reading (at the time of the	e subm	nission of	study program	nme pro	posal)	
Pavković, B.: Mari	ne HVA	C&R systems, (lectures), ht	tps://	moodle.s	rce.hr			
1.11. O	ptional	/ additional reading (at the	e time	of propo	sing study pro	gramme _.)	
ASHRAE: 2018 AS	HRAE H	ANDBOOK- REFRIGERATION	N, (boo	ok) ASHR	AE Atlanta, 20	18.		
ASHRAE: 2016 AS	HRAE H	ANDBOOK- RHVAC SYSTEM	IS AND	equipn	1ENT, (book) A	SHRAE A	Atlanta, 2016.	
1.12. N attending		of assigned reading copi ourse	es wit	th regard	d to the nu	mber oj	^f students cu	rrently
Title					Number of a	copies	Number student	-
Pavković, B.: Marine HVAC&R systems, (lectures),								
https://moodle.srce.hr					unlimited			
1.13. Quality monitoring methods which ensure acquirement of output knowledge, skills and competences								
Through the Institution's quality assurance system.								

Basic description						
Course title	Materials Characterization and Fracture Anal	Materials Characterization and Fracture Analysis				
Study programme	Graduate University Study of Mechanical Engineering					
Course status	optional	optional				
Year	2.					
ECTS credits and	ECTS student 's workload coefficient	5				
teaching	Number of hours (L+E+S)	Number of hours (L+E+S) 30+30+0				

1.1. Course objectives

Introduction to the methods of microscopy, spectroscopy and macroscopic testing and training for their application in practice. Understanding the basics of material fracture analysis. Understanding the causes and mechanisms of crack propagation under different load conditions. Characterization of brittle materials and assessment of fatigue life.

1.2. Course enrolment requirements

Basic knowledge of metal materials.

1.3. Expected course learning outcomes

Describe and analyze the structure and basic properties of technical materials. Describe and analyze methods of material characterization and methods of taking and preparing samples for material characterization. Analyze the results of materials testing by microscopy, spectroscopy and macroscopic testing. Select appropriate material characterization methods in material quality assessment. Understand brittle and ductile fracture. Understand Griffith's criteria of fracture. Explain the causes and mechanisms of crack initiation and propagation in various loading conditions. Explain the basic terms and concepts of fracture analysis. Describe the procedures and explain the meaning of fractography.

1.4. Course content

Classification and main groups of material characterization methods: microscopy, spectroscopy and macroscopic testing. Structure characteristics and basic properties of technical materials. Microstructure testing. Optical microscopy. Electron microscopy. Chemical composition testing. Optical spectrometry. X-ray spectrometry. Electron spectrometry. Thermal analysis. Solidification cooling curves. Osmond curve. Dilatometric analysis. Static test methods. Dynamic test methods. Static long-term testing. Hardness testing. Technological testing. Liquid penetrants testing. Magnetic particle testing. Radiographic testing. Ultrasonic testing. Damaging processes in materials. Definition of fracture and deformation. Types of fractures. Micromechanisms of brittle fracture. Griffith's theory of brittle fracture, energy criterion of crack propagation. Macro and micro damage analysis. Fractography.

1.5. Teaching methods	 lectures seminars and workshops exercises long distance education fieldwork 	 individual assignment multimedia and network laboratories mentorship other 					
1.6. Comments	-						
1.7. Student's obligations							
Course attendance, seminar paper, studying.							

1.8. Evaluation of student's work							
Course attendance	2	Activity/Participation		Seminar paper	1	Experimental work	
Written exam	1	Oral exam		Essay		Research	
Project		Sustained knowledge check	1	Report		Practice	
Portfolio		Homework					
1.9. Procedure and examples of learning outcome assessment in class and at the final exam							
Course attendance, sustained knowledge check, seminar papers, written exam.							

1.10. Assigned reading (at the time of the submission of study programme proposal)

Franz, M., Mechanical properties of materials, FSB, Zagreb, 1998. (in Croatian)

Callister, W. D., Jr., Materials science and engineering: An Introduction, John Wiley & Sons, New York, Chichester, etc., 1996.

Križan, B., Fundamentals of Calculation and Design of Machine Elements, Zagreb : Školska knjiga, 2008. (in Croatian) Materials Characterization, ASM Handbook Vol. 4, ASM International, Materials Park, OH, 1986.

Vitez, I., Testing of mechanical properties of metallic materials, Slavonski Brod: Strojarski fakultet u Slavonskom Brodu, Trg I.B. Mažuranić 2, Sveučilište J.J. Strossmayera u Osijeku, 2006. (in Croatian)

ASM Handbook, Volume 8, Mechanical Testing and Evaluation, ASM International, Materials Park, OH, 2000. Smokvina Hanza, S., E-podloge za predavanja: Karakterizacija materijala i analiza loma, RITEH, Rijeka, 2021. (na Merlinu) (in Croatian)

1.11. Optional / additional reading (at the time of proposing study programme)

Dieter, George E., Mechanical Metallurgy, McGraw-Hili Book Company, London, etc., 1986.

Hosford, William F., Mechanical behavior of materials, Cambridge University Press, Cambridge, etc., 2010.

Roesler, J., Mechanical behaviour of engineering materials: metals, ceramics, polymers, and composites, Springer, Berlin, New York, 2007.

Analytical Chemistry and Its Applications, John Wiley & Sons, Inc., 1996.

Smith, G. C., Quantitative Surface Microanalysis by Auger and x-ray Photoelectron Spectroscopy, Vol. 25, No.1, 1990.

1.12. Number of assigned reading copies with regard to the number of students currently attending the course

Title	Number of copies	Number of students
Franz, M., Mechanical properties of materials, FSB, Zagreb, 1998. (in Croatian)	3	12
Callister, W. D., Jr., Materials science and engineering: An Introduction, John Wiley & Sons, New York, Chichester, etc., 1996.	1	12
Križan, B., Fundamentals of Calculation and Design of Machine Elements, Zagreb : Školska knjiga, 2008. (in Croatian)	18	12
Materials Characterization, ASM Handbook Vol. 4, ASM International, Materials Park, OH, 1986.	1	12
Vitez, I., Testing of mechanical properties of metallic materials, Slavonski Brod: Strojarski fakultet u Slavonskom Brodu, Trg I.B. Mažuranić 2, Sveučilište J.J. Strossmayera u Osijeku, 2006. (in Croatian)	1	12
ASM Handbook, Volume 8, Mechanical Testing and Evaluation, ASM International, Materials Park, OH, 2000.	1	12
Smokvina Hanza, S., E-podloge za predavanja: Karakterizacija materijala i analiza loma, RITEH, Rijeka, 2021. (na Merlinu) (in Croatian)	available on Merlin	12

1.13. Quality monitoring methods which ensure acquirement of output knowledge, skills and competences

Basic description						
Course title	Materials Protection	Materials Protection				
Study programme	Graduate University Study of Mechanical Engi	Graduate University Study of Mechanical Engineering				
Course status	optional	optional				
Year	1.					
ECTS credits and	ECTS student 's workload coefficient	5				
teaching	Number of hours (L+E+S)	Number of hours (L+E+S) 30+30+0				

1.1. Course objectives

Students will learn about types of corrosion and damage that can cause corrosion and methods implementing material protection of corrosion.

1.2. Course enrolment requirements

None.

1.3. Expected course learning outcomes

Define the corrosion, thermodynamics and kinetics of corrosion of metal materials. Explain the mechanisms of corrosion. Analyze internal and external factors that affect corrosion. Analyze corrosion protection principles. Describe the methods and procedures of protection against corrosion of metals and their alloys. Define the advantages and disadvantages of certain protection procedures. Describe the methods of determining the corrosion rate and compare the effectiveness of various corrosion protection procedures. Define the appropriate corrosion protection method based on technological and construction requirements.

1.4. Course content

Definition of corrosion. Costs and damages caused by corrosion. Classification of corrosion processes. Mechanisms of corrosion. Chemical corrosion. The quality of the oxide films. Electrochemical corrosion. Corrosion cell. Hydrogen and oxygen depolarization. Standard electrode potential of metal. Pourbaix diagrams. Causes of electrochemical corrosion. Electrochemical corrosion rate. Examination and analysis of corrosion damages. Types of corrosion: uniform, pitting, subsurface, crevice, galvanic, selective and intergranular corrosion. Corrosion under mechanical stresses: stress corrosion cracking, corrosion fatigue, fretting corrosion, erosion corrosion, and cavitation corrosion. Corrosion protection methods. Application of corrosion-resistant materials. Designing to prevent corrosion. Electrochemical protection. Protection using corrosion inhibitors. Corrosion protection using coatings - metallic inorganic and organic coatings.

			0 11 1	- 0-		J	
1.5. Teaching methods		 lectures seminars and worksho exercises long distance education fieldwork 			nedia a tories	signment and network	
1.6. Commen	ts						
1.7. Student's	s obligat	tions					
Course attendanc learning.	Course attendance, homework, preparation for participation in classes, seminar paper, independent learning.						
1.8. Evaluation of student's work							
Course	2	Activity/Participation	Semina	ir paper	1	Experimental	

Written exam0.5Oral examEssayResearchProjectSustained knowledge check1ReportPracticePortfolioHomework0.5	attendance					work	
Project check Practice Practice	Written exam	0.5	Oral exam		Essay	Research	
Portfolio Homework 0.5	Project			1	Report	Practice	
	Portfolio		Homework	0.5			

Course attendance, homework, sustained knowledge check, seminar paper, written exam.

1.10. Assigned reading (at the time of the submission of study programme proposal)

Smokvina Hanza, S., E-Lectures: Materials Protection, RITEH, Rijeka, 2021. (in Croatian) Juraga, I., Alar, V., Stojanović, I., Corrosion and coatings for corrosion protection, FSB, Zagreb, 2014. (in Croatian)

Roberge, P. R., Handbook of Corrosion Engineering, Mc Graw-Hill, New York, 2000.

Filetin, T., Kovačiček, F., Indolf, J., Properties and application of materials, FSB, Zagreb, 2011. (in Croatian)

1.11. Optional / additional reading (at the time of proposing study programme)

Esih, I., Dugi, Z., Corrosion protection technology, Školska knjiga, Zagreb, 1990. (in Croatian)

Esih, I., Basics of surface protection, FSB, Zagreb, 2007. (in Croatian)

Novosel, M., Krumes, D., Special steels, Strojarski fakultet, Slavonski Brod, 1998. (in Croatian)

Corrosion: Materials, ASM Handbook Vol. 13B, ASM International, Materials Park, OH, 2005.

Fontana M. G., Greene, N. D., Corrosion Engineering, Mc Graw-Hill, New York, 1978.

Talbot, D., Talbot, J., Corrosion Science and Technology, CRC Press, 1998.

Askeland, D. R., Wright, W. J., The science and engineering of materials, Boston [etc.]: Cengage Learning, cop. 2016.

Callister, W. D., Jr., Materials science and engineering: An Introduction, John Wiley & Sons, New York, Chichester, etc., 1996.

1.12.	Number	of	assigned	reading	copies	with	regard	to	the	number	of	students	currently	'
attena	ling the co	ours	se											

Title	Number of copies	Number of students
Juraga, I., Alar, V., Stojanović, I., Corrosion and coatings for corrosion protection, FSB, Zagreb, 2014. (in Croatian)	1	8
Roberge, P. R., Handbook of Corrosion Engineering, Mc Graw-Hill, New York, 2000.	1	8
Filetin, T., Kovačiček, F., Indolf, J., Properties and application of materials, FSB, Zagreb, 2011. (in Croatian)	5	8
Smokvina Hanza, S., E-Lectures: Materials Protection, RITEH, Rijeka, 2021. (in Croatian)	available on Merlin	8

1.13. Quality monitoring methods which ensure acquirement of output knowledge, skills and competences

Basic description						
Course title	Mathematics for Engineers	Mathematics for Engineers				
Study programme	Graduate University Study of Mechanical Eng	Graduate University Study of Mechanical Engineering				
Course status	compulsory	compulsory				
Year	1.					
ECTS credits and	ECTS student 's workload coefficient	7				
teaching	Number of hours (L+E+S)	Number of hours (L+E+S) 45+30+0				

1.1. Course objectives

Acquiring basic knowledge in mathematical analysis and vector analysis.

1.2. Course enrolment requirements

None.

1.3. Expected course learning outcomes

Define and correctly interpret basic notions in trigonometric polynomials approximations, partial differential equations, and vector analysis. Compute approximations of some functions with trigonometric polynomials, determine analytical solutions for typical equations of mathematical physics on simple domains, and find solutions of problems in vector analysis. Give physical interpretation for: typical equations of mathematical physics, gradient of scalar fields, divergence and rotor of vector fields, solenoid and conservative fields, and curve and surface integrals.

1.4. Course content

Approximation of functions with trigonometric polynomials. Applications.

Partial differential equations of mathematical physics. Applications.

Vector analysis Applications.

Curve integrals. Surface integrals. Triple integrals. Integral theorems Applications.

	🔀 lectures	individual assignment
1.5. Teaching	seminars and workshops	multimedia and network
methods	🔀 exercises	laboratories
methous	Iong distance education	🗌 mentorship
	🗌 fieldwork	other
1.6. Comments	-	

1.7. Student's obligations

Course attendance, activity/participation, studying

1.8. Evaluation of student's work

Course attendance	2.5	Activity/Participation		Seminar paper	Experimental work	
Written exam	0.5	Oral exam	0.5	Essay	Research	
Project		Sustained knowledge check	3.5	Report	Practice	
Portfolio						

Course attendance, activity/participation, mid-term exams, and written and/or oral exam.

1.10. Assigned reading (at the time of the submission of study programme proposal)

Kreyszig, E.: Advanced Engineering Mathematics, John Wiley & Sons, Inc., 1993 Štefan Trubić M., Črnjarić-Žic N., Maćešić S., Mathematics for engineers, course material

(on-line available on e-course)

Pavčević M.: Vector Analysis, (FER) Biblioteka Bolonja, Element, 2007. (In Croatian)

1.11. Optional / additional reading (at the time of proposing study programme)

Farlow J. S., Partial differential equations for scientists and engineers, Dover publication Inc., 1993

1.12. Number of assigned reading copies with regard to the number of students currently attending the course					
Title	Number of copies	Number of students			
Kreyszig, E.: Advanced Engineering Mathematics, John Wiley & Sons, Inc., 1993	3	120			
Štefan Trubić M., Črnjarić-Žic N., Maćešić S., Mathematics for engineers, course material (on-line available on e-course)	150	120			
Pavčević M.: Vector Analysis, (FER) Biblioteka Bolonja, Element, 2007. (In Croatian)	2	120			
1.13. Quality monitoring methods which ensure acquirement of output knowledge, skills and competences					

Basic description					
Course title	Mechanical Behaviour and Selection of Mater	Mechanical Behaviour and Selection of Materials			
Study programme	Graduate University Study of Mechanical Engi	Graduate University Study of Mechanical Engineering			
Course status	optional	optional			
Year	2.	2.			
ECTS credits and	ECTS student 's workload coefficient 5				
teaching	Number of hours (L+E+S) 30+30+0				

1.1. Course objectives

Groups of materials. Properties, features and parameters of material behaviour. Understanding the connection between the microstructure and the mechanical behaviour of materials. Understanding of the mechanisms of strengthening, fatigue, creep and the occurrence of residual stresses. Developing the ability to choose an appropriate criterion of failure. Introduction to the constitutive models of materials. Developing the ability to choose an appropriate criterion of fatigue failure. Understanding and application of methodology of materials selection in the design process.

1.2. Course enrolment requirements

Working knowledge of mechanics, strength of materials, metallic and non-metallic materials.

1.3. Expected course learning outcomes

Ability to define the type of atomic bonding and the microstructure and relate them to mechanical behaviour of different materials subjected to various loading conditions. Ability to explain the mechanisms of strengthening, fatigue, creep of materials and the occurrence of residual stresses, to select and apply an appropriate criterion of failure for the calculation of strength. Ability to distinguish the mechanisms of ductile and brittle failure. Ability to select and apply criterion of fatigue crack initiation. Ability to interpret and use the data about the mechanical properties of materials. Ability to differentiate between various types of constitutive material models. Ability to analyze design, technological, economical and other requirements and set up proper criteria for materials selection. Ability to apply and use (Ashby) materials selection charts.

1.4. Course content

Properties, behaviour and selection of materials in the context of the product development. Physical phenomena and processes, especially those at the microscopic, molecular and atomic scale, determining and explaining the macroscopic behaviour of various kinds of design-relevant materials (metals, polymers, composites, ceramics) under different types and modes of loading: kinds and mechanisms of deformation, alterations of mechanical properties, fatiguing, damaging, and failure. Yield and failure criteria. Phenomenological characterisation and classification of mechanical behaviour and performance of materials. Constitutive models. Material fatigue. Requirements and criteria for materials selection. Materials selection charts. Computer-aided materials selection.

	⊠ lectures	🔀 individual assignment
15 Touching	seminars and workshops	multimedia and network
1.5. Teaching	🔀 exercises	laboratories
methods	Iong distance education	mentorship
	🗌 fieldwork	other
1.6. Comments		
1.7. Student's obliga	itions	

Course attendance, program assignments, individual studying. 1.8. Evaluation of student's work Course Experimental 2 Activity/Participation Seminar paper attendance work Written exam 1 Essay Research Oral exam Sustained knowledge 1 Report Practice Project check Program Portfolio Homework assignment assignments 1

1.9. Procedure and examples of learning outcome assessment in class and at the final exam

Course attendance, program assignments, sustained knowledge check, combined written and oral exam

1.10. Assigned reading (at the time of the submission of study programme proposal)

Teaching materials and lecture notes.

Dowling, N. E., Mechanical Behavior of Materials : Engineering Methods for Deformation, Fracture, and Fatigue, 3rd ed., Pearson Education, Upper Saddle River (NJ), 2007.

Ashby, M. F., Materials Selection in Mechanical Design, 3rd ed., Butterworth-Heinemann, Oxford, 2005. Filetin, T., Materials Selection in Product Development, FSB, Zagreb, 2000. (in Croatian)

1.11. Optional / additional reading (at the time of proposing study programme)

Roesler, J., Harders, H., Baeker, M., Mechanical Behaviour of Engineering Materials : Metals, Ceramics, Polymers, and Composites, Springer, Berlin, 2007.

Meyers, M. A., Chawla, K. K., Mechanical Behavior of Materials, Prentice-Hall, Upper Saddle River, NJ, 1999.

1.12. Number of assigned reading copies with regard to the number of students currently attending the course

Title	Number of copies	Number of students
Dowling, N. E., Mechanical Behavior of Materials : Engineering Methods for Deformation, Fracture, and Fatigue, 3rd ed., Pearson Education, Upper Saddle River (NJ), 2007.	1	12
Ashby, M. F., Materials Selection in Mechanical Design, 3rd ed., Butterworth-Heinemann, Oxford, 2005.	1	12
Filetin, T., Materials Selection in Product Development, FSB, Zagreb, 2000. (in Croatian)	4	12
1.13. Quality monitoring methods which ensure acqu competences	irement of output ki	nowledge, skills and

Basic description				
Course title	Mechanical Design of Machine Components			
Study programme	Graduate University Study of Mechanical Engineering			
Course status	optional			
Year	1.			
ECTS credits and	ECTS student 's workload coefficient 5			
teaching	Number of hours (L+E+S) 30+45+0			

1.1. Course objectives

Acquiring theoretical knowledge and skills development in order to understand the application of simple and complex machine elements in complex mechanical machine components. Analysis of given problems and methodological solution of project tasks related to power transmissions, with regards to the standard guidelines and with the application of suitable software solutions.

1.2. Course enrolment requirements

None.

1.3. Expected course learning outcomes

Choose the criteria for dimensioning and design of in complex mechanical machine components. Apply modern standard procedures for the assessment of load capacity of simple and complex machine elements. Optimally dimension and design gear transmission. Recommend and interpret the achieved results by sharing information, through presentations and technical documentation.

1.4. Course content

Complex mechanical machine components. Elements of power transmissions. Gear transmissions. Spur gears. Involute gearing. Contact of solids (Hertzian contact). Gear design. Law of gearing. Gears dimensioning. Bevel gears. Standard procedures for the evaluation of load capacity and durability of gears. Elastohydrodynamic lubrication.

Stresses in gears teeth. Load capacity of gears. Calculation and design of a gear transmission, including concept sketches and required technical drawings. Application of software packages for the geometry and strength control of machine elements and components.

1.5. Teaching methods lectures
 seminars and workshops
 exercises
 long distance education
 fieldwork

individual assignment
 multimedia and network
 laboratories
 mentorship
 other

1.6. Comments

1.7. Student's obligations

Course attendance, activity, homework, project tasks, studying.

1.8. Evaluation of student's work

Course attendance	2.5	Activity/Participation		Seminar paper	0.5	Experimental work	
Written exam	0.5	Oral exam		Essay		Research	
Project	1	Sustained knowledge	0.5	Report		Practice	

	check			
Portfolio				

Course attendance. Oral examination through mid-term exams. Evaluation of independent work and presentation skills through seminars. Continuous evaluation of accuracy, precision, completeness and creativity in solving the problem assignment. Written verification of acquired knowledge on the final exam.

1.10. Assigned reading (at the time of the submission of study programme proposal)

Obsieger, B., Gear Transmissions (In Croatian), Faculty of Engineering, Rijeka, 2012. Kraut's Mechanical Manual (In Croatian), Axiom, Zagreb, 1997., 2009.

1.11. Optional / additional reading (at the time of proposing study programme)

Orlić, Ž., Gear Reducer (In Croatian), Tehnički fakultet u Rijeci, Rijeka, 2001.

Oberšmit, E., Gears and Gearing (In Croatian), SNL, 1982.

1.12. Number of assigned reading copies with regard to the number of students currently attending the course

Title	Number of copies	Number of students
Obsieger, B., Gear Transmissions (In Croatian), Faculty of Engineering, Rijeka, 2012.	5	16
Kraut's Mechanical Manual (In Croatian), Axiom, Zagreb, 1997., 2009.	16	16
1.13. Quality monitoring methods which ensure acquire competences	uirement of output k	nowledge, skills and

	Basic description				
Course title	Mechanics of Composites	Mechanics of Composites			
Study programme	Graduate University Study of Mechanical Engin	Graduate University Study of Mechanical Engineering			
Course status	optional	optional			
Year	2.				
ECTS credits and	ECTS student 's workload coefficient	5			
teaching	Number of hours (L+E+S)	30+30+0			

1.1. Course objectives

Obtaining theoretical knowledge and develop skills to solve practical problems in the field of mechanics of composite structures.

1.2. Course enrolment requirements

Basic knowledge of solid mechanics.

1.3. Expected course learning outcomes

Define the main composite constituents. Highlight the features and benefits of the use of composite materials. Define the constitutive equations of anisotropic materials. Describe the change in elastic constants due to the change of fibre orientation. Define the rule of mixture. Calculate the mechanical properties of composites using the rule of mixture. Establish a connection between engineering constants of elasticity tensor and compliance tensor. Analyze a lamina mechanical behaviour. Establish the constitutive equations of multilayer laminates. Determine the stress and strain distribution over the composite lamina. Define the composite failure criteria. Define the thermal and moisture effects on composite mechanics. Analyze the laminated composite cross section beams. Explain the basic experimental testing procedures for determining the mechanical properties of composite materials.

1.4. Course content

Introduction. Constitutive equations of anisotropic materials. Macromechanics of composites. Micromechanics of composites. Mechanics of laminated composites. Hydrothermal effects on mechanical behaviour of composites. Interlaminar stresses. Failure criteria. Composite beam-type structure analysis. Basic experimental testing of composites.

basic experimental testing of composites.							
1.5. Teaching methods		 lectures seminars and workshop exercises long distance education fieldwork 		🗌 multii 📃 labora		signment and network	
1.6. Commen	ts						
1.7. Student's	1.7. Student's obligations						
Course attendanc	e, activ	ity, project, studying.					
1.8. Evaluation of student's work							
Course attendance	2	Activity/Participation		Seminar paper	0.5	Experimental work	
Written exam	1	Oral exam	1	Essay		Research	

Project	0.5	Sustained knowledge check	Report		Practice	
Portfolio		Homework				
1.9. Procedur	e and e	xamples of learning outcon	ne assessment in c	lass and at the	final exam	
Course attendanc	e, activ	ity, project, written and ora	ll exam.			
1.10. A	ssigned	reading (at the time of the	e submission of stu	dy programme	proposal)	
-						
1.11. O	ptional	/ additional reading (at the	time of proposing	study progran	nme)	
Jones, R. M.: "Me Reddy, J. N.: "Me Kollar, L. P., Sprin 2003. Christensen, R. M 1.12. N	chanics chanics nger, G .: "Mec umber	nent analysis of composite of composite materials", T of laminated composite pla . S.: "Mechanics of compo hanics of composite materi of assigned reading copi	aylor & Francis, Ph ates and shells", CF site structures", C als", Dover Publica	iladelphia, 199 RC Press, Boca I Cambrige Unive ations inc., New	9. Raton, 2004. ersity Press, Cam v York, 2005.	
attending	g the co	Title	Λ	lumber of copie	Numbe	-
1.13. Q compete		nonitoring methods which	ensure acquire	ment of outpu	t knowledge, sk	ills and

Basic description				
Course title	Metal Materials	Metal Materials		
Study programme	Graduate University Study of Mechanical Eng	Graduate University Study of Mechanical Engineering		
Course status	optional	optional		
Year	1.			
ECTS credits and	ECTS student 's workload coefficient	5		
teaching	Number of hours (L+E+S)	30+30+0		

1.1. Course objectives

Student will get the knowledge of metal materials, their classification, properties, microstructure and application.

1.2. Course enrolment requirements

None.

1.3. Expected course learning outcomes

Define equilibrium and non-equilibrium microstructure transformation in steel. Analyse the effects of microstructure on the mechanical properties of steel. Analyse properties and applicability of construction and special kinds of steels. Analyse properties and applicability of cast irons and other metal alloys. Analyse properties and applicability of special metal materials. Select appropriate material on the basis of construction and technological requirements.

1.4. Course content

Equilibrium and non-equilibrium microstructure transformation in steel. Microstructure and mechanical properties of steel. TTT-diagrams. Types of steel. Properties and application of structural steels and high strength steels. Microstructure, properties and application of corrosion and chemical resistant steels. Tool steels. Cast irons. Microstructure and properties of cast irons. Application of cast irons. Aluminium alloys. Microstructure and properties of aluminium alloys. Application of aluminium alloys. Magnesium alloys. Microstructure and properties of magnesium alloys. Application of magnesium alloys. Properties and application trends of alloys formed in semi-solid state. Copper alloys. Classification, properties and applications of copper alloys. Super alloys. Classification, properties and applications of titanium alloys. Lead alloys. Tin alloys. Hard metals.

1.5. Teaching methods		 Iectures seminars and worksho exercises long distance educatio fieldwork 	ops	mult	imedia ratories torship	signment and network	
1.6. Comment	ts	-					
1.7. Student's	obliga	tions					
Course attenda	ince, pr	reparation of seminars, stud	dying.				
1.8. Evaluation of student's work							
Course attendance	2	Activity/Participation	Semina	r paper	1	Experimental work	

Written exam	1	Oral exam		Essay		Research	
Project		Sustained knowledge check	1	Report		Practice	
Portfolio		Homework					
1.9. Procedur	e and e	examples of learning outco	me ass	essment i	n class and at the	e final exam	
Course attenda	ance, s	ustained knowledge check,	semin	ar papers	, written exam.		
1.10. A	ssigned	l reading (at the time of th	e subn	nission of	study programm	e proposal)	
Brodu, Slavonski E De ferri metallogr	Brod, 19 aphia I	., Ferrous materials. II part 995. (in Croatian) , II, III, Bruxelles[etc.]: Pr nation and Fracture Mecha	esses /	Academiq	ues[etc.], 1966	5-1967.	KOM
1.11. 0	ptional	/ additional reading (at th	e time	of propos	ing study progra	mme)	
Heat Treating,	ASM H	andbook Vol. 4, ASM Inter	nation	al, Materi	als Park, OH, 199	1.	
1.12. N attending		of assigned reading cop ourse	ies wi	th regard	l to the numb	er of students o	currently
		Title			Number of cop	ies Numbe stude	
	akultet	., Ferrous materials. II part u Slavonskom Brodu, Slavo			1	12	
De ferri metallogr Academiques[e	•	, II, III, Bruxelles[etc.]: Pr 66-1967.	esses		1	12	
	Deforn	nation and Fracture Mecha	nics of		1	12	
1.13. Q compete		monitoring methods whic	h ensu	re acqu	irement of outp	ut knowledge, si	kills and

Basic description				
Course title	Micro- and Nanoelectromechanical Systems	Micro- and Nanoelectromechanical Systems		
Study programme	Graduate University Study of Mechanical Engir	Graduate University Study of Mechanical Engineering		
Course status	optional	optional		
Year	2.			
ECTS credits and	ECTS student 's workload coefficient	5		
teaching	Number of hours (L+E+S)	30+15+0		

1.1. Course objectives

Competences in appropriate modelling, design, construction, production and usage of micro- and nanoelectromechanical systems. Team work and capability to communicate with experts.

1.2. Course enrolment requirements

None.

1.3. Expected course learning outcomes

Explain the terminology and notions related to MEMS and NEMS systems. Distinguish and characterise the scaling laws in various fields. Distinguish and characterise the relevant production technologies. Distinguish the materials used in this field. Distinguish and characterise innovative materials and technological processes. Explain and summarise the principles of modelling and simulation of systems. Explain occurrences and terminology related to micro- and nanotribology as well as the microfluidic systems. Explain the basics of measurement of mechanical entities in MEMS and NEMS elements and systems. Explain the ethical and societal aspects of the usage of the nanotechnologies. Teamwork and written and oral communication with experts in this and other fields.

1.4. Course content

Definition of micro- and nanoelectromechanical systems (MEMS & NEMS). Basic terminology. Scaling laws in miniaturisation. Production technologies for MEMS & NEMS. Used materials (especially carbon nanotubes and graphene). Usage of biological, therapeutics and other innovative materials and technological processes. Design and integration of systems. Modelling of systems. Basics of micro- and nanotribology. Basics of labon-a-chip systems and of microfluidics. Applications of MEMS & NEMS systems. Calculation, modelling and measurements in the field of micro- and nanoelectromechanical elements and systems. Ethical and social aspects of the usage of the nanotechnologies.

1.5. Teaching methods	 lectures seminars and workshops exercises long distance education fieldwork 	 individual assignment multimedia and network laboratories mentorship other 				
1.6. Comments	-					
1.7. Student's obliga	tions					
Course attendance, activity, homework assignments (seminar papers) and autonomous study.						
1.8 Evaluation of stu	1.8 Evaluation of student's work					

1.8. Evaluation of student's work

Course 1.5 attendance	Activity/Participation	Seminar paper	1.5	Experimental work		
-----------------------	------------------------	---------------	-----	----------------------	--	--

Written exam	Oral exam	0.5	Essay	Research	
Project	Sustained knowledge check	1.5	Report	Practice	
Portfolio					

1.9. Procedure and examples of learning outcome assessment in class and at the final exam

Active participation to classes and homework assignments (seminar papers). Knowledge review via quizzes and on final exam.

1.10. Assigned reading (at the time of the submission of study programme proposal)

***: "Springer Handbook of Nanotechnology" - 3rd ed., ed. Bh. Bushan, Springer Verlag, Berlin (D), 2010.
T.-R. Hsu: "MEMS & MICROSYSTEMS – Design and Manufacture", McGraw Hill, Boston (MA, USA), 2002.
M. J. Madou: "Fundamentals of Microfabrication", CRC Press, Boca Raton (FL, USA), 2002.

S. Zelenika, E. Kamenar: "Precision Engineering and Micro- and Nanosystems Technologies – Precision Engineering", University of Rijeka – Faculty of Engineering, Rijeka (HR), 2015. (in Croatian)

1.11. Optional / additional reading (at the time of proposing study programme)

N. Maluf and K. Willimas: "An Introduction to Microelectromechanical Systems Engineering" - 2nd ed., Artech House, Boston (MA, USA), 2004.

***: "Microsystems Mechanical Design" – CISM Courses and Lectures No. 478, Springer Verlag, Wien (A), 2006.

K. K. Jain: "The Handbook of Nanomedicine" - 3rd ed., Humana Press (Springer), New York (NY, USA), 2017.

1.12. Number of assigned reading copies with regard to the number of students currently attending the course

Title	Number of copies	Number of students
***: "Springer Handbook of Nanotechnology" - 3 rd ed., ed. Bh. Bushan, Springer Verlag, Berlin (D), 2010.	1	10
TR. Hsu: "MEMS & MICROSYSTEMS – Design and Manufacture", McGraw Hill, Boston (MA, USA), 2002.	1	10
M. J. Madou: "Fundamentals of Microfabrication", CRC Press, Boca Raton (FL, USA), 2002.	1	10
S. Zelenika, E. Kamenar: "Precision Engineering and Micro- and Nanosystems Technologies – Precision Engineering", University of Rijeka – Faculty of Engineering, Rijeka (HR), 2015. (in Croatian)	5	10
N. Maluf and K. Willimas: "An Introduction to Microelectromechanical Systems Engineering" - 2 nd ed., Artech House, Boston (MA, USA), 2004.	1	10
***: "Microsystems Mechanical Design" – CISM Courses and Lectures No. 478, Springer Verlag, Wien (A), 2006.	1	10
K. K. Jain: "The Handbook of Nanomedicine" - 3 rd ed., Humana Press (Springer), New York (NY, USA), 2017.	1	10

1.13. Quality monitoring methods which ensure acquirement of output knowledge, skills and competences

Via the institutionalised quality assurance system of the Faculty of Engineering. Constant interaction and work with the students with the aim of improving the quality of teaching.

Basic description				
Course title	Modelling in Engineering	Modelling in Engineering		
Study programme	Graduate University Study of Mechanical Engi	Graduate University Study of Mechanical Engineering		
Course status	optional	optional		
Year	1.			
ECTS credits and	ECTS student 's workload coefficient	5		
teaching	Number of hours (L+E+S)	30+30+0		

1.1. Course objectives

Define mathematical models in engineering practice. Apply mathematical models in typical engineering problems and solve them. Use of the appropriate methods for solving specific problems. Use of the specialized software packages.

1.2. Course enrolment requirements

None.

1.3. Expected course learning outcomes

Recognize appropriate mathematical model for some physical problems. Differentiate models which are based on ordinary differential equations and models based on partial differential equations. Differentiate initial and boundary value problems. Formulate correctly appropriate mathematical model of physical problem. Explain correctly fundamental ideas and properties of different numerical approaches and methods for solving differential equations; explain correctly advantages and disadvantages of particular computational methods. Solve mathematical model with appropriate numerical method with the aid of existing or homemade software. Evaluate results of applied methods.

1.4. Course content

Introduction to mathematical modelling of technical systems. Models based on ordinary differential equations (ODE). Solving of initial problems and boundary value problems. Dynamical systems. Methods for solving dynamical systems. Models based on partial differential equations (PDE). Applications to viscous fluid flow, stationary heat transport, conservation laws, gas flow, shallow water.

1.5. Teaching methods lectures
 seminars and workshops
 exercises
 long distance education
 fieldwork

individual assignment
 multimedia and network
 laboratories
 mentorship
 other

1.6. Comments

1.7. Student's obligations

Course attendance, activity, solving and presentation of project tasks, studying.

1.8. Evaluation of student's work

Course attendance	2	Activity/Participation		Seminar paper	Experimental work
Written exam	0.5	Oral exam		Essay	Research
Project	1.5	Sustained knowledge	1	Report	Practice

		check							
Portfolio									
1.9. Procedur	1.9. Procedure and examples of learning outcome assessment in class and at the final exam								
Sustained knowle	dge cheo	k, solving and presentatio	on of pi	roject tas	sks, oral ex	am.			
1.10. A	ssigned ı	reading (at the time of the	e subm	ission of	study prog	ıramm	e prop	oosal)	
Chapra S. C., Char	nnale R. F	P., Numerical methods for	engine	eers, Mc	GrowHill In	c., 200)3		
1.11. O	1.11. Optional / additional reading (at the time of proposing study programme)								
Strang G., Compu	tational	Science & Engineering, We	ellesley	/-Cambri	dge Press,	2007.			
1.12. N attendin		of assigned reading copi Irse	es wit	h regard	d to the	numb	er of	students cu	rrently
		Title			Number	of cop	ies	Number student	-
Chapra S. C., Channale R. P., Numerical methods for engineers, McGrowHill Inc., 2003 10 15									
1.13. Quality monitoring methods which ensure acquirement of output knowledge, skills and competences									
Through the Instit	tution's c	quality assurance system.							

Basic description					
Course title	Modelling of Hydraulics and Pneumatics Systems				
Study programme	Graduate University Study of Mechanical Engineering				
Course status	optional				
Year	2.	2.			
ECTS credits and	ECTS student 's workload coefficient	5			
teaching	Number of hours (L+E+S)	45+30+0			

1.1. Course objectives

Acquisition of knowledge of hydraulic and pneumatic systems as parts of mechatronic systems and methodology and tools for their design.

1.2. Course enrolment requirements

Attended: Power Transmissions.

1.3. Expected course learning outcomes

Distinguish systems for fluid power. Define el.-hydraulic and el.-pneumatic systems. Apply automation on fluid power systems. To analyze the complex structure of the mobile and industrial systems. Select the available software tools for modeling and simulation as part of solving complex design tasks. Explain and present the solution of the project task.

1.4. Course content

Mathematical modelling of hydraulics and pneumatics systems. Control systems. Hydraulics and pneumatics proportional and servo systems. Hydraulic hybrid technologies. Design of ALC systems: MPL and fluidic. Modelling of complex hydraulics systems using a simulation software. Modelling of pneumatics systems using a pneumatic laboratory system.

	🛛 lectures	🔀 individual assignment
1.5. Teaching methods	seminars and workshops	multimedia and network
	🔀 exercises	🔀 laboratories
methous	Iong distance education	🗌 mentorship
	🗌 fieldwork	other
16 Commonts		

- 1.6. Comments
- 1.7. Student's obligations

Course attendance, the application of knowledge for solving project task using appropriatly software for simulation of hydraulic and pneumatic systems.

1.8.	Evaluation o	of student's	work
1.0.	Evaluation o	j student s	work

Course attendance	2.5	Activity/Participation	Seminar paper	Experimental work	
Written exam	1	Oral exam	Essay	Research	
Project	1	Sustained knowledge check	Report	Practice	0.5
Portfolio		Homework			

1.9. Procedure and examples of learning outcome assessment in class and at the final exam

Course attendance, activity, making project task, project presentation, written exam.

1.10. Assigned reading (at the time of the submission of study programme proposal)

Siminiati, D.: Oil hydraulic, Tehnički fakultet Sveučilišta u Rijeci, Rijeka, 2012. (In Croatian)

Jelali, K., Kroll, A.: Hydraulic Servo-systems, Springer, 2008.

Beater, P.: Pneumatic drives: System Design, Modelling and Control, Springer, 2006.

J. Petrić: Automation, Fakultet strojarstva i brodogradnje, Sveučilište u Zagrebu, 2012. (In Croatian) Costa, G. K., Sepheri. N.: Hydrostatic transmision and actuators, Wiley, 2014.

1.11. Optional / additional reading (at the time of proposing study programme)

H. E. Merritt: "Hydrauilc Control Systems", John Wilez&Sons, 1967

Bishop, R. H., The Mechatronics Handbook, CRC Press, Boca Raton, 2002.

1.12. Number of assigned reading copies with regard to the number of students currently attending the course

attending the course		
Title	Number of copies	Number of students
Siminiati, D.: Uljna hidraulika, Tehnički fakultet Sveučilišta u Rijeci, Rijeka, 2012.	13	20
Jelali, K., Kroll, A.: Hydraulic Servo-systems, Springer, 2008.	1	20
Beater, P.: Pneumatic drives: System Design, Modelling and Control, Springer, 2006.	1	20
J. Petrić: "Automatska regulacija: uvod u analizu i sintezu", Fakultet strojarstva i brodogradnje, Sveučilište u Zagrebu, 2012.	available online	20
Costa, G. K., Sepheri. N.: Hydrostatic transmision and actuators, Wiley, 2014.	1	20
1.13. Quality monitoring methods which ensure acque competences	uirement of output kr	nowledge, skills and

Basic description					
Course title	Non Conventional and Additive Manufacturing	Non Conventional and Additive Manufacturing Processes			
Study programme	Graduate University Study of Mechanical Engineering				
Course status	optional				
Year	2.	2.			
ECTS credits and	ECTS student 's workload coefficient	5			
teaching	Number of hours (L+E+S)	30+30+0			

1.1. Course objectives

Acquisition of theoretical knowledge and training for modeling and optimization of non conventional and additive manufacturing processes, independent selection of the most appropriate process with regard to economic aspects and the quality of the finished product, and calculation of technological parameters.

1.2. Course enrolment requirements

None.

1.3. Expected course learning outcomes

To identify and to describe the non conventional and additive manufacturing processes and their application. To interpret the physical fundamentals of non conventional and additive manufacturing processes. To apply the basic calculations of the most important technological parameters. To analyze the characteristics of different non conventional and additive manufacturing processes. To assess the advantages and limitations of applying non conventional and additive manufacturing processes compared to conventional processes and with each other. To select the most appropriate process with regard to economic aspects and the quality of the finished product. To apply experimental modeling and optimization of non conventional and additive manufacturing processes.

1.4. Course content

Classification and development of manufacturing technologies. Non conventional machining processes: ultrasonic machining, abrasive jet machining, water jet machining, abrasive water jet machining, ice jet machining, chemical machining, photochemical machining, electrochemical machining, shaped tube electrolytic machining, electrochemical jet machining, electrical discharge machining, laser beam machining, electron beam machining, plasma beam machining, ion beam machining and hybrid machining processes. Additive manufacturing processes: vat photopolymerisation, material jetting, material extrusion, powder bed fusion, binder jetting, sheet lamination and directed energy deposition. Experimental modeling and optimization of non conventional and additive manufacturing processes.

	51				
1.5. Teaching methods	 lectures seminars and workshops exercises long distance education fieldwork 	 individual assignment multimedia and network laboratories mentorship other 			
1.6. Comments					
1.7. Student's obliga	tions				
Course attendance, control tasks, project, independent learning.					
1.8. Evaluation of student's work					

Course attendance	2	Activity/Participation		Seminar paper	Experimental work	
Written exam	1	Oral exam		Essay	Research	
Project	1	Sustained knowledge check	1	Report	Practice	
Portfolio						

1.9. Procedure and examples of learning outcome assessment in class and at the final exam

Course attendance, sustained knowledge check, project, written and / or oral exam.

1.10. Assigned reading (at the time of the submission of study programme proposal)

Cukor, G.: Non-conventional Machining Processes, internal script, Tehnički fakultet Sveučilišta u Rijeci, 2011. (in Croatian)

Cukor, G.: Hybrid Machining Processes, internal script, Tehnički fakultet Sveučilišta u Rijeci, 2011. (in Croatian)

Cukor, G.: Additive Manufacturings, internal script, Tehnički fakultet Sveučilišta u Rijeci, 2011. (in Croatian)

1.11. Optional / additional reading (at the time of proposing study programme)

Krar, S., Gill, A.: Exploring Advanced Manufacturing Technologies, Industrial Press, 2003.

1.12. Number of assigned reading copies with regard to the number of students currently attending the course

Title	Number of copies	Number of students
Cukor, G.: Non-conventional Machining Processes, internal script, Tehnički fakultet Sveučilišta u Rijeci, 2011. (in Croatian)	50	46
Cukor, G.: Hybrid Machining Processes, internal script, Tehnički fakultet Sveučilišta u Rijeci, 2011. (in Croatian)	50	46
Cukor, G.: Additive Manufacturings, internal script, Tehnički fakultet Sveučilišta u Rijeci, 2011. (in Croatian)	50	46

1.13. Quality monitoring methods which ensure acquirement of output knowledge, skills and competences

Basic description				
Course title	Non-Metal Materials	Non-Metal Materials		
Study programme	Graduate University Study of Mechanical Engineering			
Course status	optional	optional		
Year	1.			
ECTS credits and	ECTS student 's workload coefficient	4		
teaching	Number of hours (L+E+S)	30+15+0		

1.1. Course objectives

Students will gain knowledge about the types and properties of non-metallic materials.

1.2. Course enrolment requirements

None.

1.3. Expected course learning outcomes

Define and explain polymers, polymerization reactions and different classifications of polymeric materials. Analyze the differences in the structure of the macromolecules of thermoplastics, thermosets and elastomers and the influence of the structure on the properties of the polymer. Analyze the influence of temperature and loading time on mechanical properties of polymer, their processing and use. Explain the relaxation phenomena in polymers. Analyze the thermal, electrical and optical properties of the polymer. Compare different methods of processing the polymer in the same finished product and explain the constraints in the choice of process with respect to the type of polymer. Compare the physical and mechanical properties of wood with the properties of other constructional materials. Define ceramic materials and their classification into traditional and technical ceramics. Explain the influence of chemical composition and structure on mechanical, thermal and electrical properties of ceramic materials. Compare the basic steps of obtaining finished products from traditional and technical ceramics as well as obtaining finished glass products. Define composite materials and their classification according to the type of reinforcement or type of matrix. Explain properties and areas of application of composites with polymer, metal and ceramic matrices.

1.4. Course content

Types of nonmetallic materials. Structure and classification of polymeric materials. Additives for polymers. Mechanical properties of polymeric materials. Thermal properties. Electrical properties. Optical properties. Aging of polymeric materials. Processing of polymeric materials into finished products. Application of polymers. Composition, structure, properties and application of wood. Structure and classification of ceramic materials. Mechanical properties. Thermal properties. Electrical properties of ceramic materials. Application of ceramics in the engineering. Properties, manufacturing and application of glass. Structure, properties and classification of composite materials. Processes for manufacturing composite materials and their application.

1.5. Teaching methods	 lectures seminars and workshops exercises long distance education fieldwork 	 individual assignment multimedia and network laboratories mentorship other
1.6. Comments		
1.7. Student's obliga	tions	

Course attendance, homework, preparation for participation in classes, seminar paper, independent learning.

Course	1.5	Activity/Participation		Seminar	paper	0.5	Experir	nental	
attendance Written exam	1	Oral exam		Essay			work Resear	ch	
Project	-	Sustained knowledge check	1	Report			Practic		
Portfolio		Homework							
1.9. Procedu	re and e	xamples of learning outco	me asse	essment ir	n class an	d at th	e final ex	am	
Course attend	lance, sı	ustained knowledge check	, semina	ar paper, v	written e	kam.			
1.10. A	Assigned	reading (at the time of th	ne subm	nission of s	tudy prog	gramm	e propos	sal)	
Katavić, I., Inti	roductio	-Lectures: Non-metal mate n to materials, RITEH, Rije F., Indolf, J., Properties and	ka, 200	8. (in Croa	atian)		-)11. (in Cr	oatian
		/ additional reading (at th							
cop. 2016.						20000011	[etc.]. c	engage L	earnin
Chichester, et Schwartz, M., Strong, A. B., I 1.12. N	c., 1996 Encyclo Plastics I Number	pedia of Materials, Part ar Materials and Processing, of assigned reading cop	nd Finisl second	g: An Intro hes, secor edition, P	oduction, Id edition rentice H	John , CRC F all, Col	Wiley & Press, 200 umbus, 0	Sons, Ne 02. Ohio, 200	ew Yor 0.
Chichester, et Schwartz, M., Strong, A. B., I	c., 1996 Encyclo Plastics I Number	pedia of Materials, Part ar Materials and Processing, of assigned reading cop	nd Finisl second	g: An Intro hes, secor edition, P	oduction, Id edition rentice H	John , CRC F all, Col numb	Wiley & Press, 200 umbus, 0 er of st	Sons, Ne 02. Ohio, 200 cudents c Numbe	0. urrent er of
Chichester, et Schwartz, M., Strong, A. B., I 1.12. N attendin	c., 1996 Encyclo Plastics I Number ng the cc	pedia of Materials, Part ar Materials and Processing, of assigned reading cop purse	nd Finisl second bies wit	g: An Intro hes, secor edition, P th regard	oduction, Id edition rentice H to the Number	John , CRC F all, Col numb	Wiley & Press, 200 umbus, 0 er of st	Sons, Ne 02. Ohio, 200 cudents c	ew Yor 0. ourrent
Chichester, et Schwartz, M., Strong, A. B., I 1.12. N attendin Katavić, I., Intro Croatian)	c., 1996 Encyclo Plastics I Number og the co oduction iček, F.,	pedia of Materials, Part ar Materials and Processing, of assigned reading cop purse Title to materials, RITEH, Rij Indolf, J., Properties and	nd Finisl second bies wit eka, 20	g: An Intro hes, secor edition, P th regard	oduction, Id edition rentice H to the Number	John , CRC F all, Col numb	Wiley & Press, 200 umbus, 0 er of st	Sons, Ne 02. Ohio, 200 tudents c Numbe studer	ew Yor 0. ourrent

Basic description							
Course title	Numerical Methods in Design	Numerical Methods in Design					
Study programme	Graduate University Study of Mechanical Engineering						
Course status	optional						
Year	2.						
ECTS credits and	ECTS student 's workload coefficient	5					
teaching	Number of hours (L+E+S)	30+30+0					

1.1. Course objectives

Development of theoretical knowledge and skills required to solve practical engineering problems by applying modern numerical methods.

1.2. Course enrolment requirements

None.

1.3. Expected course learning outcomes

Applying interpolation and error estimation. Describe orthogonal and shape functions. Describe the most important partial differential equations (PDE). Applying finite difference and finite element methods. Applying the Gauss and Green theorems. Describe Green functions and general solutions of PDE. Solving PDE by FEM. Compare direct and numerical integration on elements. Compare methods of solving linear equation systems. Apply the acquired knowledge to concrete machine design problems. Numerically determine equation solutions. Numerically determine optimal solutions for engineering problems. Numerically solve ordinary differential equations.

1.4. Course content

Error and uncertainty. Error propagation. Approximation and interpolation. Orthogonal coordinate functions. Shape functions. The most important PDEs in heat conduction, elasto-mechanics, fluid mechanics and lubrication. Boundary conditions. Finite difference method and finite volume method. Frontal integration. Gauss and Green theorems. Fundamental solutions (Green functions) of PDEs. Solving PDE by FEM. Direct and numerical integration on finite elements. Strategies for the solving of linear equation systems. Comparison of different method for solving PDEs on the same examples. Procedures for the numerical solution of equations. Finding of optimal solutions for engineering problems. Methods for the solution of differential equations. Application of the Boundary Element Method. Application of the Genethic Algorithm in engineering problems.

5						
1.5. Teaching methods		 lectures seminars and workshop exercises long distance education fieldwork 	os 🗌 mul	timedia pratories ntorship		
1.6. Commen	ts					
1.7. Student's	s obliga	tions				
Course attendanc	e, activi	ty, homework, project tasks	, studying.			
1.8. Evaluatio	on of stu	ident's work				
Course	2	Activity/Participation	Seminar paper	1	Experimental	

attendance				work	
Written exam	Oral exam	0.5	Essay	Research	
Project	Sustained knowledge check	1	Report	Practice	
Portfolio	Homeworks	0.5			

1.9. Procedure and examples of learning outcome assessment in class and at the final exam

Course attendance. Oral examination through two mid-term exams. Evaluation of presentation skills through two seminars. Continuous evaluation of accuracy, precision, completeness and creativity in solving the problem assignment. Written verification of acquired knowledge on the final exam.

1.10. Assigned reading (at the time of the submission of study programme proposal)

Chapra, S. C.; Canale, R. P.: Numerical methods for engineers, McGraw-Hill Book Company, New York, 1990. Obsieger, B.: Numerical Methods I – Basis and Fundamentals, Tehnički fakultet, Rijeka, 2012.

Obsieger, B.: Numerical Methods II – Roots and Equations Systems, Tehnički fakultet, Rijeka, 2012.

Obsieger, B.: Numerical Methods III – Approximation of Functions, Tehnički fakultet, Rijeka, 2011.

Obsieger, B.: Numerical Methods IV – Interpolation and Shape Functions, Tehnički fakultet, Rijeka, 2014.

1.11. Optional / additional reading (at the time of proposing study programme)

Alfirević, I.: Uvod u tenzore i mehaniku kontinuuma, Golden marketing–Tehnička knjiga, Zagreb, 2000. Esfandiari, R. S.: Numerical methods for engineerins and scientists using MATLAB, CRC Press, Boca Raton, 2013.

Jović, V.: Uvod u inženjersko numeričko modeliranje, Aquarius Engineering, Split, 1993.

Langtangen, H. P.: Python scripting for computational science, Springer-Verlag, Berlin, 2008.

Obsieger, B.: Metoda rubnih elemenata I, ISBN 953-98862-4-4, Zigo Rijeka, 2003.

Obsieger, B.: Metoda rubnih elemenata II, ISBN 953-98862-9-5, Zigo Rijeka, 2003.

Press, W. H.; Teukolsky, S. A.; Vetterling, W. T.; Flannery, B. P.: Numerical Recipes 3rd Edition, Cambridge University Press, New York NY, 2007.

Šribar, J.; Motik, Boris.; Motik, Bruno.: Demistificirani C++, Element, Zagreb, 2006.

Zienkiewicz, O.C., Taylor, R.L., ZHU, J.Z.: The Finite Element Method, its Basis and Fundamentals, Elsevier, London, 2006.

1.12.	Number	of	assigned	reading	copies	with	regard	to	the	number	of	students	currently	,
attena	ling the co	urs	e											

Title	Number of copies	Number of students
Obsieger, B.: Numerical Methods I – Basis and Fundamentals, ISBN 978-953-6326-66-2, Faculty of Engineering, Rijeka, 2014.	2	16
Obsieger, B.: Numerical Methods II – Roots and Equations Systems, ISBN 978-953-6326-67-9, Faculty of Engineering, Rijeka, 2012.	2	16
Obsieger, B.: Numerical Methods III – Approximation of Functions, ISBN 978-953-6326-68-6, Faculty of Engineering, Rijeka, 2011.	4	16
Obsieger, B.: Numerical Methods IV – Interpolation and Shape Functions, Tehnički fakultet, Rijeka, 2014.	1	16
Chapra, S. C.; Canale, R. P.: Numerical methods for engineers, McGraw-Hill Book Company, New York, 1990.	6	16

1.13. Quality monitoring methods which ensure acquirement of output knowledge, skills and competences

Through the Institution's system of quality control.

Basic description							
Course title	Numerical Modelling in Thermodynamics	Numerical Modelling in Thermodynamics					
Study programme	Graduate University Study of Mechanical Engi	Graduate University Study of Mechanical Engineering					
Course status	optional	optional					
Year	1.						
ECTS credits and	ECTS student 's workload coefficient	5					
teaching	Number of hours (L+E+S)	30+30+0					

1.1. Course objectives

Obtaining theoretical knowledge in fields of mathematical modelling and numerical solving, as well as training of skills for solving practical numerical problems in fields of thermodynamics.

1.2. Course enrolment requirements

Basic knowledge of thermodynamics.

1.3. Expected course learning outcomes

Define and mathematically describe mass, momentum and energy conservation laws in vector and differential form. Describe and analyze differential and integral forms of the general transport equation. Define and compare numerical methods for solving of heat transfer problems. Define and describe the discretisation equations using control volume method for steady and unsteady heat conduction. Define and describe the discretisation equations using control volume method for steady and unsteady convection-diffusion problems. Describe and compare solution algorithms for pressure-velocity coupling. Define and describe methods of discretised equation systems solving. Apply acquired knowledge on the numerical calculations of temperature, velocity and pressure fields. Apply acquired knowledge on the mathematical model, initial and boundary conditions defining as well as on the results interpretation in use of software for numerical simulations of heat transfer.

1.4. Course content

Mathematical description of thermodynamic processes. Mass, momentum and energy conservation laws. Vector forms of the continuity, Navier-Stokes and energy equations. Differential equations setting. Initial and boundary conditions. Differential and integral forms of the general transport equation. Numerical methods for solving of heat transfer problems. Control volume method. Temperature fields calculation during steady and unsteady heat conduction. Control volume method for convection-diffusion problems. Solution algorithms for pressure-velocity coupling. Temperature fields calculation for convection-diffusion problems. Laminar boundary layer. Calculation of unsteady problems. Initial and boundary conditions treatment. Solution of discretised equation systems. Computer codes for numerical simulations of heat transfer processes.

1.5. Teaching methods	 lectures seminars and workshops exercises long distance education fieldwork 	 individual assignment multimedia and network laboratories mentorship other
1.6. Comments		
1.7. Student's oblig	ations	

Course attendance, activity, homework, seminar work, studying.

1.8. Evaluatio	on of stu	ıdent's work							
Course attendance	2	Activity/Participation		Seminai	r paper	0.5	Experimen work	ital	
Written exam		Oral exam	1	Essay			Research		
Project		Sustained knowledge check	1	Report			Practice		
Portfolio	Homework 0.5								
1.9. Procedure and examples of learning outcome assessment in class and at the final exam									
Course attendance, activity, homework, seminar work, continuous knowledge testing (two mid-term exams), written and oral exam.									
1.10. A	ssigned	reading (at the time of th	e subr	nission of a	study pro	gramm	e proposal)		
Versteeg,H.K., Malalasekera,W.: An Introduction to CFD:The Finite Volume Method, L. S&T, Essex, 1995. Welty, J. R., Wicks, C. E., Wilson, R. E.: Fundamentals of Momentum, Heat and Mass Transfer, John Wiley & Sons Inc., New York, 1984. Patankar, S. W.: Numerical Heat Transfer and Fluid Flow, Hemisphere Publishing Corp., NY, 1980.									
		/ additional reading (at th					•		
Bošnjaković, F.: T Zagreb, 2012. (in		lynamics, Vol. I, II and III (1)	(reprin	t editions	of 1978,	1976 a	and 1986), G	iraphis d.o.o.,	
1.12. N attending		of assigned reading cop purse	ies wi	th regara	to the	numb	er of stude	ents currently	
	-	Title			Number	r of cop		lumber of students	
-		kera,W.: An Introduction . S&T, Essex, 1995.	n to (CFD:The		1		20	
Welty, J. R., Wicks, C. E., Wilson, R. E.: Fundamentals of Momentum, Heat and Mass Transfer, John Wiley & Sons Inc., New York, 1984.220									
Patankar, S. W.: Numerical Heat Transfer and Fluid Flow, Hemisphere Publishing Corp., NY, 1980.120						20			
1.13. Q compete		nonitoring methods whic	h ensu	ire acqu	irement c	of outp	ut knowled	ge, skills and	

Basic description							
Course title	Numerical Modelling of Hydraulic Machines	Numerical Modelling of Hydraulic Machines					
Study programme	Graduate University Study of Mechanical Engi	Graduate University Study of Mechanical Engineering					
Course status	optional	optional					
Year	2.						
ECTS credits and	ECTS student 's workload coefficient	5					
teaching	Number of hours (L+E+S)	30+30+0					

1.1. Course objectives

Identifying computational problems in engineering practice; understanding and application of computer environment for turbomachine geometry creation. Automatic creation of 2D and 3D geometry of hydraulic machines; application of commercial software for fluid flow simulation and turbomachine performance assessment.

1.2. Course enrolment requirements

None.

1.3. Expected course learning outcomes

Indicate and correctly interpret 2D numerical fluid flow analysis of axial and radial turbo machinery. Develop tools for effective blade design for hydraulic machines: apply different spline curves for blade shape design: using NACA profiles, using pressure and suction side curves and using profile camber and thickness curves. Develop a computer program in Fortran or C / C+ + and apply it to create geometry of wicket gate, stay vanes and runner blades. Apply a commercial computer program for simulation of 3D flow in the axial, radial and axial-radial turbines and determine machine performance and efficiency. Define geometric parameters for shape optimization and perform an optimization based on fluid flow simulation results.

1.4. Course content

Problem formulation. 2D numerical fluid flow analysis of axial and radial turbines. Development of tools for efficient blade design using different spline curves. Blade design using NACA profiles, pressure and suction side curves and camber and thickness curve distribution. Computer programs in Fortran, C, C+ +. Applications for creation of geometry of stay vanes, wicket gate and rotor blades. Finite volume discretization and numerical fluid flow simulation. 3D fluid flow simulation in the axial, radial and axial-radial turbines. Machine performance assessment . Definition of geometric parameters for blade shape optimization.

1.5. Teaching methods	 lectures seminars and workshops exercises long distance education fieldwork 	 individual assignment multimedia and network laboratories mentorship other 				
1.6. Comments						
1.7. Student's c	bligations					
Course attendance,	activity, homework, independent s	udying.				
1.8. Evaluation of student's work						
Course	2 Activity/Participation	Seminar paper Experimental				

attendance						work	
Written exam	0.5	Oral exam		Essay		Researc	n
Project	1.5	Sustained knowledge check	1	Report		Practice	
Portfolio							
1.9. Procedu	re and e	examples of learning outcom	me ass	essment i	n class and at th	e final exa	m
Course atten	dance, a	activity, homework, project	t.				
1.10. A	ssigned	reading (at the time of th	e subr	ission of	study programm	e proposa	1)
	•	: Machines: Turbines and P es, Tehnička knjiga, 1955.,	• •		670-001-9, CRC	Press, 199	94.
Tuzson, J., Centri	fugal Pu	mp Design, ISBN 0-471-36	100-3,	John Wile	y & Sons, 2000.		
1.11. C	Optional	/ additional reading (at th	e time	of propos	ing study progra	mme)	
-	ic, M., C	Computational Methods Fo	r Fluid	Dynamic	s, ISBN: 3540420	746, Sprir	ger-Verlag,
1996.			. .	о I ·		4000	
		Recipes for C/C++/Pascal/ of assigned reading cop			<u> </u>		donte ourront
attendin			ies wi	in reguit			uents currenti
	9	Title			Number of cop	ies	Number of students
Krivchenko, G., H 56670-001-9, CR	•	: Machines: Turbines and P 1994.	umps,	ISBN 1-	1		15
Horvat, D., Vodne	e turbine	e, Tehnička knjiga, 1955., (in Croa	tian)	1		15
Tuzson, J., Centrifugal Pump Design, ISBN 0-471-36100-3, John					1		15
Wiley & Sons, 20	JU.						
1.13. 0	Vality	monitoring methods whic	h oncu		iromont of outr	ut knowl	odro okillo ar

Basic description							
Course title	Offshore Operations	Offshore Operations					
Study programme	Graduate University Study of Mechanical Engir	Graduate University Study of Mechanical Engineering					
Course status	optional	optional					
Year	2.						
ECTS credits and	ECTS student 's workload coefficient	5					
teaching	Number of hours (L+E+S)	30+30+0					

1.1. Course objectives

Creating preconditions for complex analysis of the scope and specificities of marine operations in offshore industry. Acquiring specific competencies in complex offshore operations. Ability to carry out appropriate analysis and assessment of corresponding requirements during planning and performing offshore operations. Acquiring specific knowledge in risk analysis of marine and offshore operations.

1.2. Course enrolment requirements

Attended course Offshore Structures and Vessels.

1.3. Expected course learning outcomes

To define and distinguish marine operations in offshore industry. To describe how weather windows can be determined according to weather forecasts and environmental loads. To have knowledge and competences about selected marine operations. To describe and analyze marine and offshore operations like station keeping, path following, heavy object lifting, pipe playing, tandem loading and off-loading, heave compensation. To be able to quantitatively and qualitatively analyze risks during marine and offshore operations.

1.4. Course content

Introduction in marine and offshore operations. Weather windows and uncertainties in weather forecasts. Marine and offshore operations: installation and operation of offshore oil and gas fields, towing and transportation of offshore structures, lifting and landing of large and heavy objects, mooring, pipe and cable laying, offshore loading and off-loading, heave compensation, subsea operations, remotely operated and autonomous operations. Analysis and assessment of requirements during planning and performing of offshore operations. Operational profiles. Risk analysis in marine and offshore operations. Qualitative and quantitative risk analysis. Safety of operations. Cost benefit analysis.

1 /	, , , ,	· · · · · · · · · · · · · · · · · · ·				
		individual assignment				
1.5. Teaching methods	 seminars and workshops exercises long distance education 	 multimedia and network laboratories mentorship 				
1.6. Comments	ieldwork fieldwork	other				
1.7. Student's oblig	1.7. Student's obligations					
Attendance, participation, seminar paper, self-study.						
1.8. Evaluation of student's work						

Course attendance	2	Activity/Participation		Seminar paper	1	Experimental work	
Written exam		Oral exam	1	Essay		Research	
Project		Sustained knowledge check	1	Report		Practice	
Portfolio							

1.9. Procedure and examples of learning outcome assessment in class and at the final exam

Attendance, activity, individual assignments, continuous assessment (2 mid-term exams), oral examination.

1.10. Assigned reading (at the time of the submission of study programme proposal)

Nielsen, F.G. (2007). Marine Operations. Lecture Notes, Department of Marine Technology, Faculty of Engineering, Norwegian University of Science and Technology, Trondheim/Bergen, Norway.

Gudmestad, O.T. (2015). Marine Technology and Operations: Theory & Practice. WIT Press, UK.

DNV GL (2017). Environmental conditions and environmental loads. Report DNVGL-RP-C205, DNV GL AS, Norway. [Online]. Available: https://www.dnvgl.com/rules-standards/

DNV GL (2017). Modelling and analysis of marine operations. Report DNVGL-RP-N103, DNV GL AS, Norway. [Online]. Available: https://www.dnvgl.com/rules-standards/

DNV GL (2017). Risk management in marine and subsea operations. Report DNVGL-RP-N101, DNV GL AS, Norway. [Online]. Available: https://www.dnvgl.com/rules-standards/

1.11. Optional / additional reading (at the time of proposing study programme)

Carlton, J., Jukes, P., Choo, Y.-S., Eds. (2018). Encyclopedia of Maritime and Offshore Engineering. John Wiley & Sons, Inc., Hoboken, USA.

Dhanak, M.R., Xiros, N.I., Eds. (2016). Springer Handbook of Ocean Engineering. Springer, Germany.

Chakrabarti, S.K. (2005). Handbook of Offshore Engineering, Vol. 2. Elsevier, Oxford, UK.

Fossen, T.I.(2011). Handbook of Marine Craft Hydrodynamics and Motion Control. John Wiley & Sons, Ltd., UK Vinnem, J.-E. (2014). Offshore Risk Assessment - Principles, Modelling and Applications of QRA Studies - Vol. 1 & 2, 3rd Ed. Springer-Verlag, London, UK.

1.12.	Number of	assigned	reading	copies	with	regard	to	the	number	of	students	currently
attend	ding the cours	se										

attending the course		
Title	Number of copies	Number of students
Nielsen, F.G. (2007). Marine Operations. Lecture Notes, Department of Marine Technology, Faculty of Engineering, Norwegian University of Science and Technology, Trondheim/Bergen, Norway.	1	20
Gudmestad, O.T. (2015). Marine Technology and Operations: Theory & Practice. WIT Press, UK.	1	20
DNV GL (2017). Environmental conditions and environmental loads. Report DNVGL-RP-C205, DNV GL AS, Norway. [Online]. Available: https://www.dnvgl.com/rules-standards/	available online	20
DNV GL (2017). Modelling and analysis of marine operations. Report DNVGL-RP-N103, DNV GL AS, Norway. [Online]. Available: https://www.dnvgl.com/rules-standards/	available online	20
DNV GL (2017). Risk management in marine and subsea operations. Report DNVGL-RP-N101, DNV GL AS, Norway. [Online]. Available: https://www.dnvgl.com/rules-standards/	available online	20
1.13. Quality monitoring methods which ensure acqu	uirement of output k	nowledge, skills and

competences

Through a structured system of quality assurance of the Faculty.

Basic description						
Course title	Offshore Structures and Vessels					
Study programme	Graduate University Study of Mechanical Engineering					
Course status	optional					
Year	1.					
ECTS credits and	ECTS student 's workload coefficient	5				
teaching	Number of hours (L+E+S)	30+30+0				

1.1. Course objectives

Creating preconditions for complex analysis of the scope and specifics of maritime technology. Based on the basic knowledge of the technical requirements, and how to achieve compliance with the broader basis for understanding the essential factors in the design, construction and operation in the maritime technology.

1.2. Course enrolment requirements

None.

1.3. Expected course learning outcomes

To distinguish offshore structures and vessels and to describe their characteristics. To estimate environmental and other loads and their impact on offshore structures and vessels. To perform static analysis of mooring lines. To describe construction and installation requirements for selected offshore structures and vehicles. To describe and perform capability analysis of dynamic positioning system. To distinguish special purpose vessels and to describe their characteristics. To distinguish other floating units and subsea structures and objects and to describe their characteristics. To analyse and elaborate environmental and ecological impact of offshore structures and vessels.

1.4. Course content

Classification of offshore structures and vessels. Fixed platforms. Compliant platforms. Jacket platforms. Jack-up platforms. Tension-leg platforms. Mooring systems. Static analysis of mooring lines. Semisubmersible rigs and ships. Dynamic positioning systems. Environmental loads. Other loads. Construction and installation requirements. Special purpose vessels: tugs, offshore supply vessels, cable-laying vessels, pipe-laying vessels, dredgers, drilling ships, heavy cargo vessels. Floating, production, storage and offloading units. Offshore wind farms and other offshore renewable energy systems. Offshore aquaculture structures. Offshore mobile bases. Subsea systems, structures and objects. Environmental and ecological aspects of offshore structures and vessels.

1.5. Teaching methods		 lectures seminars and worksho exercises long distance educatio fieldwork 		multi _ labor	media atories orship		
1.6. Commen	ts						
1.7. Student's	1.7. Student's obligations						
Attendance, parti	Attendance, participation, seminar paper, self-study.						
1.8. Evaluation of student's work							
Course	2	Activity/Participation	Semina	ar paper	1	Experimental	

attendance				work	
Written exam	Oral exam	1	Essay	Research	
Project	Sustained knowledge check	1	Report	Practice	
Portfolio					

1.9. Procedure and examples of learning outcome assessment in class and at the final exam

Attendance, activity, individual assignments, continuous assessment (2 mid-term exams), oral examination.

1.10. Assigned reading (at the time of the submission of study programme proposal)

Reddy, D.V., Swamidas, A.S.J. (2014). Essentials of Offshore Structures - Framed and Gravity Platforms. CRC Press, Taylor & Francis Group, LLC, Boca Raton, FL, USA.

Wilson, J.F., Ed. (2003). Dynamics of Offshore Structures. John Wiley & Sons, Inc., Hoboken, New Jersey, USA. Chakrabarti, S.K. (2005). Handbook of Offshore Engineering, Vol. 1 & 2. Elsevier, Oxford, UK.

DNV GL (2017). DNV GL rules for classification: Ships (RU-SHIP), Underwater technology (RU-UWT), Offshore units (RU-OU), Offshore standards (OS). [Online]. Available: https://www.dnvgl.com/rules-standards/

1.11. Optional / additional reading (at the time of proposing study programme)

El-Reedy, M.A. (2012). Offshore Structures - Design, Construction and Maintenance. Elsevier, USA.

McCormick, M.E. (2010). Ocean Engineering Mechanics with Applications. Cambridge University Press, New York, USA.

Faltinsen, O.M. (1990). Sea Loads on Ships and Offshore Structures. Cambridge University Press, Cambridge, UK.

Karimirad, M. (2014). Offshore Energy Structures - For Wind Power, Wave Energy and Hybrid Marine Platforms. Springer International Publishing, Switzerland.

Carlton, J., Jukes, P., Choo, Y.-S., Eds. (2018). Encyclopedia of Maritime and Offshore Engineering. John Wiley & Sons, Inc., Hoboken, USA.

1.12. Number of assigned reading copies with regard to the number of students currently attending the course

Number of copies	Number of students
1	20
1	20
1	20
Available online	20
	1 1 1

1.13. Quality monitoring methods which ensure acquirement of output knowledge, skills and competences

Through a structured system of quality assurance of the Faculty.

Basic description							
Course title	Polymer Processing	Polymer Processing					
Study programme	Graduate University Study of Mechanical Eng	Graduate University Study of Mechanical Engineering					
Course status	optional	optional					
Year	2.						
ECTS credits and	ECTS student 's workload coefficient	5					
teaching	Number of hours (L+E+S)	30+15+0					

1.1. Course objectives

Acquisition of theoretical and practical knowledge from the production and processing of polymeric materials. Developing skills of apply numerical simulations in the injection molding process for the injection mold design.

1.2. Course enrolment requirements

None.

1.3. Expected course learning outcomes

Describe the method of polymeric materials production. Explain the structural characteristics of polymers. Classify polymeric materials. State and explain the mechanical, rheological, thermal, electrical, and chemical properties of polymers. List and explain the procedures of primary shaping and forming. Analyze the cycle of the thermoplastic injection molding process. State and explain the function of the basic elements of an injection mold. Analyze key process parameters. List the shortcomings of the molded part. Analyze the obtained results of numerical simulations of mold filling in injection molding.

1.4. Course content

Development and significance of polymer application. Production of polymeric materials. Structural characteristics of polymers. Division of polymers and polymeric materials, their labeling, and classification. Mechanical, rheological, and thermal properties of polymers. Energy and heat balance in polymer processing. Primary and forming polymer processing. Production of polymeric foam and composite polymers. Machining and joining of polymer products. Management of plastic products. Numerical flow simulation in the injection molding process. Injection mold design. Design of cooling channel-conformal cooling system.

1.5. Teaching methods	 lectures seminars and workshops exercises long distance education fieldwork 	 individual assignment multimedia and network laboratories mentorship other
1.6. Comments		

1.7. Student's obligations

Class attendance and activity, solving assigned project work, and independent learning.

1.8. Evaluation of student's work

Course attendance	1.5	Activity/Participation	Seminar paper	Experimental work	
Written exam	0.5	Oral exam	Essay	Research	

Project	1	Sustained knowledge check	2	Report			Practice		
Portfolio									
1.9. Procedure and examples of learning outcome assessment in class and at the final exam									
Class attendance, project work, continuous knowledge assessment, and written and/or oral examination.									
1.10. A.	ssigned	reading (at the time of the	e subm	nission of st	udy prog	ramm	e proposal)		
Croatian) Rogić, A., Čatić, I., i gumu, Zagreb, 20	Rogić, A., Čatić, I., Godec, D.: <i>Polimeri i polimerne tvorevine</i> , ISBN-13: 978-953-97450-6-4, Društvo za plastiku i gumu, Zagreb, 2008. (in Croatian) Raos, P., Šercer, M.: <i>Teorijske osnove proizvodnje polimernih tvorevina</i> , ISBN-13: 978-953-6048-57-1,								
		/ additional reading (at the	-					croatic	, ing
 Dangel, R.: Injection Molds for Beginners, 2nd edition, eBook ISBN-13: 978-1-56990-819-8, Hanser Publications, 2020. Baur, E., Osswald, T.A., Rudolph, N.: Plastics Handbook - The Resource for Plastics Engineers, 5th edition, Hardcover ISBN-13: 978-1569905593, eBook ISBN: 978-1-56990-560-9, Hanser Publications, 2019. 1.12. Number of assigned reading copies with regard to the number of students currently attending the course 									
		Title			Number	of cop	ιρς	lumber student	-
		<i>limernih tvorevina</i> , ISBN 99 u, Zagreb, 2006. (in Croatia		150-4-7,	:	8		20	
Rogić, A., Čatić, I., Godec, D.: <i>Polimeri i polimerne tvorevine</i> , ISBN 978-953-97450-6-4, Društvo za plastiku i gumu, Zagreb, 2008. (in 5 20 Croatian)									
Raos, P., Šercer, M.: <i>Teorijske osnove proizvodnje polimernih tvorevina</i> , ISBN 978-953-6048-57-1, Strojarski fakultet u Slavonskom Brodu i Fakultet strojarstva i brodogradnje u Zagrebu, 2010. (in Croatian)									
1.13. Q compete		monitoring methods which	n ensu	re acquire	ement o	f outp	ut knowled	ge, skil	lls and

Basic description					
Course title	Power Transmissions				
Study programme	Graduate University Study of Mechanical Engineering				
Course status	optional				
Year	1.				
ECTS credits and	ECTS student 's workload coefficient	5			
teaching	Number of hours (L+E+S)	45+45+0			

1.1. Course objectives

Acquiring knowledge and skills about topics related to power transmissions. Mastering the basis hydrostatic and pneumatic power transmissions, the application of knowledge to constructional compiling of assembly and simulations on computer software solutions. The development of the ability to calculate, design and apply complex power transmissions in industrial praxis, taking into consideration demands regarding safety, ecology, ergonomics, engineering ethics, etc.

1.2. Course enrolment requirements

None.

1.3. Expected course learning outcomes

Explain the term, classification and application of power transmissions. Explain the ways of transmission power in mechanical, hydraulic and pneumatic systems. Define the sources of hydraulic energy and compressed air energy. Distinguish the components for control in hydraulic and pneumatic systems. Describe auxiliary devices. Connecting hydraulic and pneumatic elements into simple circuit. Implement knowledge onto complex systems of power transmissions. Modelling of basic pneumatics systems using a laboratory pneumatic system. Define classification, application, calculation and design of planetary (epicyclic) gears, worm gears, frictional transmissions, conventional and automated gear-boxes. Explain and define application of power transmissions in cars, trucks, tractors, ships, airplanes, helicopters, wind turbines, hoisting devices, etc. Understand the importance of using ecology, ergonomics and engineering ethics in design and maintenance of power transmissions. Apply acquired knowledge in design and application of complex power transmissions, using computer software solutions.

1.4. Course content

Fundamental of power transmissions, principal features, classification, application. Development and application of hydraulic and pneumatic devices and systems. Standardized symbols of the hydraulic and pneumatic elements. Working fluids. Energy and power in hydraulic and pneumatic systems. Sources of the hydraulic and compressed air energy (pumps and compressors). Actuators (motors and cylinders). Components for control in hydraulic and pneumatic systems (valves). Auxiliary devices. Hydro-pneumatic devices. Vacuum devices. Designing of fluid power systems and their combinations with mechanical transmissions. Planetary (epicyclic) gears: fundamentals of the theory and the operation, types, purpose, calculation of the planetary gear's geometry and transmission ratio. Wolfram's planetary gear. Analysis of the forces and torques. Power branching. Design and application of conventional and automated gear-boxes. Worm gears: fundamentals of the theory and the operation, geometry, materials, lubrication, efficiency, design of worms and wheels, intermittent and short duration running, calculation of load capacity and safety factors. Frictional transmissions: types, purpose, design, calculation of the contact pressure, durability. Continuously variable transmissions. Modern vehicle transmissions. Application of power transmissions in cars, trucks, tractors, ships, airplanes, helicopters, wind turbines, hoisting devices, etc. Analysis of the importance of using ecology, ergonomics and engineering ethics in design and maintenance of power

transmissions. Application of computer software solutions for calculation, analysis and optimization of power transmissions. \boxtimes lectures 🔀 individual assignment seminars and workshops multimedia and network 1.5. Teaching ⊠ laboratories exercises methods long distance education mentorship fieldwork other 1.6. Comments 1.7. Student's obligations Course attendance, activity, solving assigned project work, studying. 1.8. Evaluation of student's work Course Experimental 3 Activity/Participation Seminar paper attendance work Written exam 0.25 Oral exam 0.25 Research Essay Sustained knowledge 0.5 0.5 Report Practice 0.5 Project check Portfolio Homework 1.9. Procedure and examples of learning outcome assessment in class and at the final exam Course attendance, activity, assembling circuits in laboratory, continuous knowledge testing (two mid-term exams), project work, final written and oral exam. Assigned reading (at the time of the submission of study programme proposal) 1.10. Siminiati, D.: Oil Hydraulics, Tehnički fakultet Sveučilišta u Rijeci, Rijeka, 2012. (in Croatian) Nikolić. J.: Pneumatic Control, Zagreb, 1976. (in Croatian) Orlić, Ž., Orlić, G.: Planetary Transmissions, Zigo, Rijeka, 2006. (in Croatian) Opalić, M.: Power and Motion Transmissions, HDESK, Zagreb, 1998. (in Croatian) Oberšmit, E.: Gearing and Gears, Sveučilišna naknada Liber, Zagreb, 1982. (in Croatian) Optional / additional reading (at the time of proposing study programme) 1.11. Krist, T.: Hydraulik, Fluidtechnik, Vogel Buchverlag, 1997. Haug, R.: Pneumatische Steuerungstechik, Teubner, Stuttgart, 1991. Lechner, G., Naunheimer, H.: Automotive Transmissions, Springer-Verlag Berlin Heidelberg, 1999. Decker, K.H.: Machine Elements, Golden marketing-Tehnička knjiga, Zagreb, 2007. (in Croatian) Dudas, I.: Worm Gear Drives, Penton Press, London, 2000. 1.12. Number of assigned reading copies with regard to the number of students currently attending the course Number of Number of Title students copies Siminiati, D.: Oil Hydraulics, Tehnički fakultet Sveučilišta u Rijeci, Rijeka, 2012. 13 20 (in Croatian) Nikolić. J.: Pneumatic Control, Zagreb, 1976. (in Croatian) 3 20 Orlić, Ž., Orlić, G.: Planetary Transmissions, Zigo, Rijeka, 2006. (in Croatian) 4 20 Opalić, M.: Power Transmissions, HDESK, Zagreb, 1998. (in Croatian) 2 20 Oberšmit, E.: Gearing and Gears, Sveučilišna naknada Liber, Zagreb, 1982. (in 7 20 Croatian) 1.13. Quality monitoring methods which ensure acquirement of output knowledge, skills and competences

Basic description					
Course title	Precision Engineering and Microsystems Technologies				
Study programme	Graduate University Study of Mechanical Engineering				
Course status	optional				
Year	2.				
ECTS credits and	ECTS student 's workload coefficient 6				
teaching	Number of hours (L+E+S)	Number of hours (L+E+S) 45+30+0			

1.1. Course objectives

Competences in appropriate design, construction, production and usage of elements of precision and micromechanical components as well as in their integration into devices. Team work and capability to communicate with experts.

1.2. Course enrolment requirements

None.

1.3. Expected course learning outcomes

Explain the terminology and notions as well as the specificities and advantages of precision and microsystems. Explain and implement resolution, accuracy and precision. Distinguish and characterise the elements of precision devices. Evaluate the elements of precision devices. Explain the characteristics, the reliability and the specificities of the design of microsystems. Distinguish and characterise precision production technologies. Distinguish and characterise microsystems' production technologies. Explain the fundamentals of vacuum technologies. Recall the basic characteristics of the materials used in this field. Explain the procedures of handling and assembly of precision and microsystems. Teamwork and written and oral communication with experts in this and other fields. Implement the acquired knowledge in the solution of concrete tasks.

1.4. Course content

Introduction to precision engineering. Emergence and role of precision engineering and microsystems. Orders of magnitude. Basic terminology in precision engineering. Micro- and nanotechnologies basics. Main characteristics of precision mechanical components and devices. Elements of precision devices. Experimental validation of performances of high precision mechanical devices. Compliant elements and their properties. Microsystems technologies. Production technologies of high precision devices and microsystems. Handling and assembly of elements of precision and microsystems. Integration of mechanical components with actuating and measuring devices: micro-(opto)-electro-mechanical systems. Examples of high precision and microsystems designs. Properties of used materials.

1.5. Teaching methods	 lectures seminars and workshops exercises long distance education fieldwork 	 individual assignment multimedia and network laboratories mentorship other
1.6. Comments	-	
1.7. Student's obligat	tions	
Course attendance, activi	ty, homework assignments and autonom	ous study.

1.8. Evaluation of student's work					
Course attendance	2.5	Activity/Participation	1.5	Seminar paper	Experimental work
Written exam		Oral exam	0.5	Essay	Research
Project		Sustained knowledge check	1.5	Report	Practice
Portfolio					

1.9. Procedure and examples of learning outcome assessment in class and at the final exam

Active participation to classes and homework assignments. Knowledge review via quizzes and on final exam.

1.10. Assigned reading (at the time of the submission of study programme proposal)

J. J. Allen: "Micro Electro Mechanical System Design", CRC Press, Boca Raton (FL, USA), 2005. M. J. Madou: "Fundamentals of Microfabrication – The Science of Miniaturisation", CRC Press, Boca Raton (FL, USA), 2002.

H. Slocum: "Precision Machine Design, Society of Manufacturing Engineers", Dearborn (MI, USA), 1992. S. Zelenika, E. Kamenar: "Precision Engineering and Micro- and Nanosystems Technologies – Precision Engineering", University of Rijeka – Faculty of Engineering, Rijeka (HR), 2015. (in Croatian)

1.11. Optional / additional reading (at the time of proposing study programme)

***: "Springer Handbook of Nanotechnology" - 3rd ed., ed. Bh. Bushan, Springer Verlag, Berlin (D), 2010.
S. D. Senturia: "Microsystems Design", Kluwer Academic Publishers, Doddrecht (NL), 2000.

S. T. Smith: "Flexures - Elements of Elastic Mechanisms", Gordon and Breach Science Publishers, Amsterdam (NL), 2000.

1.12. Number of assigned reading copies with regard to the number of students currently attending the course

Number of copies	Number of students
1	15
1	15
1	15
5	15
1	15
1	15
1	15
	1 1 1 5 1

1.13. Quality monitoring methods which ensure acquirement of output knowledge, skills and competences

Via the institutionalised quality assurance system of the Faculty of Engineering. Constant interaction and work with the students with the aim of improving the quality of teaching.

Basic description					
Course title	Process Plants' Equipment				
Study programme	Graduate University Study of Mechanical Engineering				
Course status	optional				
Year	2.				
ECTS credits and	ECTS student 's workload coefficient	5			
teaching	Number of hours (L+E+S)	30+30+0			

1.1. Course objectives

Assuming theoretical knowledge and development of skills for practical solving of problems in design and application of process equipment.

1.2. Course enrolment requirements

None.

1.3. Expected course learning outcomes

Classification and description of processes in process industry and gas liquefaction. Definition and description of main process equipment. Classification, description of regulation and application, interpretation of calculation of process tanks and pressure equipment in process plants. Description of design, and presentation of basic calculations for destillation equipment. Description of application of process furnaces, their components, design characteristics and controls. Description of types, construction parts and features with interpretation of design and selection procedures of reactors, separators, filters and mixing equipment. Demonstration of selection procedures and application of pumps and fans in process plants. Selection, calculation and design of pipelines, selection ad calculation of pipeline supports, joints and bellows for compensation of thermal dilatation of process equipment security requirements. Selection of safety equipment in process industry. Description of process equipment in process and performance of calculation of pipelines, thermal insulation of pipelines, choice of types and performance of calculation of pipelines, thermal insulation of pipelines.

1.4. Course content

Process plants in oil, petrochemical, chemical and other process industries. Introduction about processes. Basic physical and chemical processes. Classification, design and protection of tanks. Classification of pressure vessels. Process columns. Process furnaces. Reactors, separators, filters and mixers. Applications of pumps and fans in process plants. Pipelines: design, selection of materials, compensation of thermal dilatations, mechanical design. Pipe supports and hangers. Valves and fittings. Safety of process plants. Types, design and specification of safety devices. Characteristics, selection, thickness calculation and mounting of thermal insulation.

1.5. Teaching methods	 lectures seminars and workshops exercises long distance education fieldwork 	 individual assignment multimedia and network laboratories mentorship other
1.6. Comments	-	
1.7. Student's obliga	itions	

Course attendance, activity, studying.

1.8. Evaluation of student's work

	-					
Course attendance	2	Activity/Participation		Seminar paper	Experimental work	
Written exam	0.5	Oral exam	0.5	Essay	Research	
Project		Sustained knowledge check	2	Report	Practice	
Portfolio						

1.9. Procedure and examples of learning outcome assessment in class and at the final exam

Course attendance, activity, continuous knowledge testing (two mid-term exams), written and oral exam.

1.10. Assigned reading (at the time of the submission of study programme proposal)

Pavković, B.: Process plants equipment, (lectures), https://moodle.srce.hr

1.11. Optional / additional reading (at the time of proposing study programme)

Cheremisnof, N. P.: Handbook of Chemical Processing Equipment, (book), Butterworth & Heinemann, Boston, Oxford 2000.

Mullinger, P., Jenkins, B: Industrial and process furnaces, (book), Butterworth – Heinemann, 2008.

Širola, D.: Machines and equipment in the oil and petrochemical industry, (book), Školska knjiga Zagreb, 1986. (in Croatian)

Ludwig, E.E.: Applied Process design for Chemical and Petrochemical Plants, (book), Volume I, II and III, Gulf Publishing Company, Houston 1984.

1.12. Number of assigned reading copies with rega attending the course	rd to the number o	f students currently
Title	Number of copies	Number of students
Pavković, B.: Process plants equipment, (lectures), https://moodle.srce.hr	unlimited	
1 12 Quality monitoring methods which ensure	wirement of output k	noulodao chille ar

1.13. Quality monitoring methods which ensure acquirement of output knowledge, skills and competences

Basic description					
Course title	Processes Planning	Processes Planning			
Study programme	Graduate University Study of Mechanical Engineering				
Course status	optional	optional			
Year	2.	2.			
ECTS credits and	ECTS student 's workload coefficient	5			
teaching	Number of hours (L+E+S)	30+30+0			

1.1. Course objectives

Introduction to the influential elements on the production process and its results. Mastering the knowledge, techniques and methods of process planning and its improvement. Basics of programming NC machines and using computers in programming. Understanding trends in the development of manufacturing techniques and production organizations, the impact of production process features.

1.2. Course enrolment requirements

None.

1.3. Expected course learning outcomes

Indicate technological background of process planning, and interpret their impact on the results and the setting process. Specify and analyse technological measures to increase productivity. Define the order of tasks of process planning and an integral technological process and interpret the objectives pursued. Explain interdependence structure of the technological process and the features of the models of the production system. Define group technology and explain the effects of the areas of product design and special tools and processes planning. Explain the specifics technological preparations for NC machines. Explain the principles of computer use in the design process. Develop NC program with the help of computers and the finished computer program and simulate the machining process.

1.4. Course content

Introduction to the technological processes of manufacture. Technological background. Technological base. Fixed and freeform treatment. Influence rigidity, vibration and temperature of the machining system and the results of the setting process. The influence of residual stresses on setting process. Accuracy of the work piece, systemic and random effects. Technological measures to increase productivity. Access process planning, process variant. Computer aided process planning - CAPP. Effect of NC – machines features of the process. Classification NC - system. Technological preparation for NC - machines. The coordinate system. NC - program and its structure. Specific technological documents for NC - machines. Different sorts of making NC - program. The introduction and optimization NC - program.

1.5. Teaching methods	 lectures seminars and workshops exercises 	 individual assignment multimedia and network laboratories 			
methods	long distance education	mentorship			
	fieldwork	other			
1.6. Comments					
1.7. Student's obliga	tions				
Course attendance. class	participation, homework, self-learning,				

Course attendance	2	Activity/Participation		Seminar	paper	Exp wo	erimental rk	
Written exam	1	Oral exam		Essay		Res	earch	
Project		Sustained knowledge check	1.5	Report		Pra	ctice	
Portfolio		Homework	0.5					
1.9. Procedu	ire and e	examples of learning outco	ne asse	essment ir	class and	at the find	al exam	
Attendance and	activity	on teaching, continuous kn	owledg	ge check, l	nomework	and writte	en and/or or	al exam
							0	
	2	I reading (at the time of th		-			posal)	
Gačnik, V., Vode Curis, M.A.: Proc	nik, F.: T ess Plan	l reading (at the time of th echnological Processes Des ning, New York, 1988. : Tehnological Processes, D	sign, Za	greb 1990). (in Croati	an)		
Gačnik, V., Vode Curis, M.A.: Proc Jurković, M., Tuf	nik, F.: T ess Plan ekčić, D.	echnological Processes Des ning, New York, 1988.	sign, Za Þesign a	greb 1990 and Mode). (in Croati lling, Tuzla,	an) 2000. (in	Croatian)	
Gačnik, V., Vode Curis, M.A.: Proc Jurković, M., Tuf 1.11.	nik, F.: T ess Plan ekčić, D. Optional	echnological Processes Des ning, New York, 1988. : Tehnological Processes, D	sign, Za Vesign a e time	greb 1990 and Mode). (in Croati lling, Tuzla, ing study pr	an) 2000. (in rogramme	Croatian)	
Gačnik, V., Vode Curis, M.A.: Proc Jurković, M., Tuf 1.11. (Mueler, G.: Tech 1.12. (nik, F.: T ess Plan ekčić, D. Optional nologisc	echnological Processes Des ning, New York, 1988. : Tehnological Processes, D / additional reading (at th the Fertigungsvorbereitung of assigned reading cop	sign, Za Design a e time /Mascl	greb 1990 and Mode of proposi ninenbau.). (in Croati lling, Tuzla, ing study pr VEB Verlag	an) 2000. (in <i>rogramme</i> g, Berlin 19	Croatian) ?) 975.	currentl
Gačnik, V., Vode Curis, M.A.: Proc Jurković, M., Tuf 1.11. (Mueler, G.: Tech 1.12. (nik, F.: T ess Plan ekčić, D. Optional nologisc	echnological Processes Des ning, New York, 1988. : Tehnological Processes, D / additional reading (at th the Fertigungsvorbereitung of assigned reading cop	sign, Za Design a e time /Mascl	greb 1990 and Mode of proposi ninenbau.). (in Croati lling, Tuzla, ing study pr VEB Verlag	an) 2000. (in cogramme g, Berlin 19 number o	Croatian) ?) 975.	er of
Gačnik, V., Vode Curis, M.A.: Proc Jurković, M., Tuf 1.11. (Mueler, G.: Tech 1.12. (attendin	nik, F.: T ess Plan ekčić, D. Optional nologisc Number ng the co	echnological Processes Des ning, New York, 1988. : Tehnological Processes, D / additional reading (at th the Fertigungsvorbereitung of assigned reading cop purse	sign, Za Pesign a e time /Mascl ies wit	greb 1990 and Mode of proposi ninenbau.). (in Croati lling, Tuzla, ing study pr VEB Verlag to the r	an) 2000. (in cogramme g, Berlin 19 number o	Croatian) 2) 975. f students Numb	er of ents
Gačnik, V., Vode Curis, M.A.: Proc Jurković, M., Tuf 1.11. (Mueler, G.: Tech 1.12. / attendir Gačnik, V., Vode 1990. (in Croatia	nik, F.: T ess Plan ekčić, D. <i>Optional</i> nologisc Number ng the co	echnological Processes Des ning, New York, 1988. : Tehnological Processes, D / additional reading (at th the Fertigungsvorbereitung of assigned reading cop purse Title	sign, Za Pesign a e time /Mascl ies wit	greb 1990 and Mode of proposi ninenbau.). (in Croati lling, Tuzla, ing study pr VEB Verlag to the r Number o	an) 2000. (in cogramme g, Berlin 19 number o	Croatian) 2) 975. f students Numbi stude	er of ents

1.13. Quality monitoring methods which ensure acquirement of output knowledge, skills and competences

Basic description						
Course title	Production Management					
Study programme	Graduate University Study of Mechanical Engineering					
Course status	optional					
Year	1.					
ECTS credits and	ECTS student 's workload coefficient 5					
teaching	Number of hours (L+E+S)	Number of hours (L+E+S) 30+30+0				

1.1. Course objectives

Master the principles of strategic planning and operations management. Be able to analyze the influencing factors on the planning and management of production. Be able to propose and evaluate improvement projects in the production environment.

1.2. Course enrolment requirements

None.

1.3. Expected course learning outcomes

Managinig the production facilities. Categorize the dominant production paradigms. Ability of calculating the production costs. Knowledge of planning and production control principles. Specify value stream map for each product. Planning of lean process improvement. Evaluate known methods of managing production resources and stock.

1.4. Course content

Production function within organization - operations and processes. Competitiveness - development strategy. New product development process and strategy. Development of dominant production paradigms. Influencing factors on the organization of the production function. Production capacity and quality management. Demand and supply management. Departments of technology and operative preparation. Structure of production cost. Managing individual and recurring production processes. Inventory management. Production resource management. Lean manufacturing, value flow analysis and continuous improvement. Time and motion study. Ergonomics and design of work environment.

1.5. Teaching methods lectures
 seminars and workshops
 exercises
 long distance education
 fieldwork

individual assignment
 multimedia and network
 laboratories
 mentorship

other

1.6. Comments

1.7. Student's obligations

Attendance, class participation, independent learning.

1.8. Evaluation of student's work

Course attendance	2	Activity/Participation		Seminar paper	Experimental work	
Written exam	1	Oral exam		Essay	Research	
Project		Sustained knowledge check	2	Report	Practice	

Portfolio								
1.9. Procedure and examples of learning outcome assessment in class and at the final exam								
Attendance and activity on lessons, continuous assessment, written and/or oral exam.								
1.10. Assigned reading (at the time of the submission of study programme proposal)								
Mikac, T.; Ljubetić, J.: Organization and Control of Production, Graphis, Zagreb; Tehnički fakultet Rijeka, Rijeka, 2009. (in Croatian)								
Slack, N.; Brandon-Jones, A.: Operations and Process Management – Principles and practice for strategic								
impact, 5th edition, Paerson, 2018.								

Optional / additional reading (at the time of proposing study programme) 1.11.

Number of assigned reading copies with regard to the number of students currently 1.12. attending the course

Title	Number of copies	Number of students
Mikac, T.; Ljubetić, J.: Organization and Control of Production, Graphis, Zagreb; Tehnički fakultet Rijeka, Rijeka, 2009. (in Croatian)	1	29
Slack, N.; Brandon-Jones, Alistair: Operations and Process Management – Principles and practice for strategic impact, 5th edition, Paerson, 2018.	1	29
1.13. Quality monitoring methods which ensure acqu	uirement of output k	nowledge, skills and

competences

Through the Institution's quality assurance system.

	Basic description			
Course title	Professional Practice II			
Study programme	Graduate University Study of Mechanical Enginee	Graduate University Study of Mechanical Engineering		
Course status	compulsory			
Year	1.			
ECTS credits and	ECTS student 's workload coefficient	5		
teaching	Number of hours (L+E+S)	-		

1.1. Course objectives

Student verifies and complements his own expertise, along with a comprehensive view of the work process.

1.2. Course enrolment requirements

None.

1.3. Expected course learning outcomes

Apply acquired knowledge and skills from studied courses professional content. Gain working process experience. Develop and further improve competence for solving specific professional engineering problems.

1.4. Course content

Industrial practice within Graduate University Study of Naval Architecture is carried out individually in work organization that is engaged in the student's field of study, and with activities in accordance with the Industrial Practice Rules and Study Program curriculum. Within such practice, student is familiarized with the corresponding jobs that are studied through programs of education, with the task of verifying and complementing their own expertise, along with a comprehensive view of the work process.

1.5. Teaching methods	 lectures seminars and workshops exercises long distance education fieldwork 	 individual assignment multimedia and network laboratories mentorship other

1.6. Comments

1.7. Student's obligations

Conducting professional practice in duration of 15 working days, or 120 hours, and writing the corresponding report.

1.8. Evaluation of student's work

Course attendance	Activity/Participation	Seminar paper		Experimental work	
Written exam	Oral exam	Essay		Research	
Project	Sustained knowledge check	Report	1	Practice	4
Portfolio					
1.9. Procedure and examples of learning outcome assessment in class and at the final exam					

Assesses and evaluates student work and dedication, and written report.

1.10.	Assigned reading (at the time of the submission of study programme proposal)				
1.11.	Optional / additional reading (at the time of propo	sing study programme	?)		
1.12. atte	Number of assigned reading copies with regard ending the course	d to the number o	f students currently		
	Title	Number of copies	Number of students		
1.13.	Quality monitoring methods which ensure acqu	irement of output k	nowledge, skills and		
	Institution's quality assurance system.				

	Basic description			
Course title	Programming of Engineering Applications			
Study programme	Graduate University Study of Mechanical Eng	Graduate University Study of Mechanical Engineering		
Course status	optional			
Year	2.			
ECTS credits and	ECTS student 's workload coefficient	5		
teaching	Number of hours (L+E+S)	30+30+0		

1.1. Course objectives

Basic knowledge of C++ programming language. Skills: to independently write simpler console and Windows applications with significant technical content.

1.2. Course enrolment requirements

None.

1.3. Expected course learning outcomes

Writing computer programs using functions written in more than one file. To define and apply pointers and properly use dynamic memory. To define and apply lightweight abstractions in computer code. Proper interpretation of classes and inheritance. Create computer programs with significant technical content.

1.4. Course content

Use of Python programming language and basic use of C++ computer language. Code organization by using functions written in more than one file. Modules, Classes and inheritance. Solving problems with significant technical content.

	🖂 lectures	🔀 individual assignment
1.5. Teaching	seminars and workshops	multimedia and network
methods	🔀 exercises	laboratories
	Iong distance education	mentorship
	fieldwork	other
16 Commonts		

- 1.6. Comments
- 1.7. Student's obligations

Course attendace, individual assignements and exercises.

1.8. Evaluation of student's work

Course attendance	2	Activity/Participation		Seminar paper		Experimental work	
Written exam	1	Oral exam		Essay		Research	
Project		Sustained knowledge check		Report		Practice	
Portfolio		Homework	2				

1.9. Procedure and examples of learning outcome assessment in class and at the final exam

1.10. Assigned reading (at the time of the submission of study programme proposal)

B. Eckel, Thinking in C++, 2000		
1.11. Optional / additional reading (at the time of proposing st	udy programme)	
B. Eckel, Thinking in C++, 2000		
1.12. Number of assigned reading copies with regard to the r course	number of students cu	rrently attending the
Title	Number of copies	Number of students
B. Eckel, Thinking in C++		10
1.13. Quality monitoring methods which ensure acquire competences	ement of output kno	owledge, skills and
Through the Institution's quality assurance system.		

Basic description				
Course title	Programming: Scripting Languages	rogramming: Scripting Languages		
Study programme	gramme Graduate University Study of Mechanical Engineering			
Course status	optional			
Year	2.			
ECTS credits and	ECTS student 's workload coefficient	6		
teaching	Number of hours (L+E+S)	30+30+0		

1.1. Course objectives

The aim of this course is familiarization with the concept of scripting languages, their historical development, initial use (command interpreters, shells, report generation) and evolution into their current state.

Along with the application of programming language concepts in the domain of scripting (i.e. declaring variables), this course references capabilities rarely present in classical programming languages. A series of short programming assignments familiarizes students with the capabilities of various scripting languages and teaches them flexibility in approaches to learning new computer languages.

Course contents include the most relevant scripting languages in various areas of application: extending OS capabilities through Unix and Windows shell scripts, server-side web scripting, scripts for scientific computing and data processing.

1.2. Course enrolment requirements

None.

1.3. Expected course learning outcomes

Classifiy computer languages into programming and scripting languages, understand their advantages and disadvantages. Analyze different real-world programming challenges and: devise an optimum solution path, apply scripting languages to create the solution, analyze and substantiate the applicability and quality of the solution. Use scripting languages to create: web applications, computer process automation scripts, data processing, scientific computing. Aalyze and explain the advantages and disadvantages of particular scripting languages in different areas of application.

1.4. Course content

Scripting languages: historical development, similarities and differences regarding programming languages, areas of application. Data management: regular expressions, string interpolation (Python). Web programming: web applications, PHP, database connectivity (MySQL), Ruby on Rails, CGI services. Computer process automation ("pasting"): Windows Script Engine – Jscript; Bash; Windows PowerShell; Scientific computing: Python. Overview of other languages: Perl, Ruby, VBScript, Javascript, Actionscript.

1.5. Teaching methods	🔀 lectures	🔀 individual assignment
	seminars and workshops	multimedia and network
	🔀 exercises	laboratories
	⊠ long distance education	🗌 mentorship
	🗌 fieldwork	other
1.6. Comments		

1.7. Student's obligations

Course attendance (lectures, exercises), activity, homework, remote coursework, formal written exam, independent studying.

1.8. Evaluation of student's work					
Course attendance	2	Activity/Participation	1	Seminar paper	Experimental work
Written exam	1	Oral exam		Essay	Research
Project		Sustained knowledge check	2	Report	Practice
Portfolio		Homework			

1.9. Procedure and examples of learning outcome assessment in class and at the final exam

Course attendance (lectures, exercises), activity, independent programming of scripting solutions, homework, continual knowledge testing (mid-term), final exam

1.10. Assigned reading (at the time of the submission of study programme proposal)

Pilgrim Mark: Dive Into Python 3, Apress, New York, SAD, 2009. –available at http://diveintopython3.org/ (downloaded 16.4.10.)

Cooper, Mendel: Advanced Bash-Scripting Guide, 2009. available at http://tldp.org/LDP/abs/html/ (downloaded 16.4.10.)

Getting Started With Windows PowerShell, available at http://technet.microsoft.com/hr-hr/library/ee177003%28en-us%29.aspx (http://bit.ly/avxQqJ) (downloaded 16.4.10.)

Getting Started with Rails, available at http://guides.rubyonrails.org/getting_started.html (downloaded 16.4.10.)

PHP 101: PHP For the Absolute Beginner, available at http://devzone.zend.com/article/627 (downloaded 16.4.10.)

Beginner's Introduction to Perl, available at http://www.perl.com/pub/a/2000/10/begperl1.html (downloaded 16.4.10.)

1.11. Optional / additional reading (at the time of proposing study programme)

Scott, Michael: Programming Language Pragmatics, 3rd edition, Morgan Kaufman, San Francisco, USA, 2009. Model, M. L.: Bioinformatics Programming Using Python, O'Reilly Media, Sebastopol, USA, 2009.

Taylor, Dave: Wicked Cool Shell Scripts, No Starch Press, San Francisco, USA, 2004.

Schwartz, R. L. et. al.: Learning Perl (5th edition), O'Reilly Media, Sebastopol, USA, 2008.

Tate, B. A. et. al.: Ruby on Rails: Up and Running, 1st Edition, Sebastopol, USA, 2006.

Beighley, L. et al.: Head First PHP & MySQL, O'Reilly Media, Sebastopol , USA, 2008.

Wilson, Ed: Microsoft Windows PowerShell Step by Step, Microsoft Press, Redmond, USA 2007.

Langtangen, H.P.: Python Scripting for Computational Science, Springer-Verlag, Berlin, Germany 2004.

1.12. Number of assigned reading copies with regard to the number of students currently attending the course

Title	Number of copies	Number students	of
Pilgrim Mark: Dive Into Python 3, Apress, New York, SAD, 2009.	freely available	-	
Cooper, Mendel: Advanced Bash-Scripting Guide, 2009	freely available	-	
Getting Started With Windows PowerShell	freely available	-	
Getting Started with Rails	freely available	-	
PHP 101: PHP For the Absolute Beginner	freely available	-	
Beginner's Introduction to Perl	freely available	-	

1.13. Quality monitoring methods which ensure acquirement of output knowledge, skills and competences

Basic description				
Course title	Project I			
Study programme	Graduate University Study of Mechanical Engineering			
Course status	compulsory			
Year	1.			
ECTS credits and	ECTS student 's workload coefficient	5		
teaching	Number of hours (L+E+S)	0+30+0		

1.1. Course objectives

Application of acquired knowledge and skills to solve practical problems in the field of associated course from which the Project I is elected.

1.2. Course enrolment requirements

Enrolled course from which the Project I is elected.

1.3. Expected course learning outcomes

Apply the knowledge and skills from professional content of the associated course. Solve practical task. Acquire competence for individually solving specific professional tasks.

1.4. Course content

Chosen chapter of associated course from which the project was elected.

1.5. Teaching methods	 lectures seminars and workshops exercises long distance education fieldwork 	 individual assignment multimedia and network laboratories mentorship other

1.6. Comments

1.7. Student's obligations

Attending the consultation, individually solving task and writing the project report.

1.8. Evaluation Course attendance	-	Activity/Participation		Seminar paper	Experimental work
Written exam		Oral exam		Essay	Research
Project	2	Sustained knowledge check		Report	Practice
Portfolio		Individual task solving	3		
1.9. Procedure and examples of learning outcome assessment in class and at the final exam					

Assesses and evaluates the accuracy and completeness of the project task solution and its presentation.

1.10. Assigned reading (at the time of the submission of study programme proposal)

References listed for the associated course from which the Project I is elected.

1.11. Optional / additional reading (at the time of proposing study programme)

References listed for the associated course from which the Project I is elected.

 1.12.
 Number of assigned reading copies with regard to the number of students currently attending the course

 Title
 Number of copies

 Title
 Number of copies

 Image: Students
 Image: Students

 Image: Stude

Basic description				
Course title	Project II			
Study programme	Graduate University Study of Mechanical Engineering			
Course status	compulsory			
Year	2.			
ECTS credits and	ECTS student 's workload coefficient	5		
teaching Number of hours (L+E+S) 0+30+0				

1.1. Course objectives

Application of acquired knowledge and skills to solve practical problems in the field of associated course from which the Project II is elected.

1.2. Course enrolment requirements

Enrolled course from which the Project II is elected.

1.3. Expected course learning outcomes

Apply the knowledge and skills from professional content of the associated course. Solve practical task. Acquire competence for individually solving specific professional tasks.

1.4. Course content

Chosen chapter of associated course from which the project was elected.

1.5. Teaching methods	 lectures seminars and workshops exercises long distance education fieldwork 	 individual assignment multimedia and network laboratories mentorship other

1.6. Comments

1.7. Student's obligations

Attending the consultation, individually solving task and writing the project report.

Course attendance		Activity/Participation		Seminar paper	Experimental work
Written exam		Oral exam		Essay	Research
Project	2	Sustained knowledge check		Report	Practice
Portfolio		Individual task solving	3		

Assesses and evaluates the accuracy and completeness of the project task solution and its presentation.

1.10. Assigned reading (at the time of the submission of study programme proposal)

References listed for the associated course from which the Project II is elected.

1.11. Optional / additional reading (at the time of proposing study programme)

References listed for the associated course from which the Project II is elected.

 1.12. Number of assigned reading copies with regard to the number of students currently attending the course

 Title
 Number of copies

 Title
 Number of copies

 1.13. Quality monitoring methods which ensure acquirement of output knowledge, skills and competences

 Through the Institution's quality assurance system.

Basic description					
Course title	Project Management	Project Management			
Study programme	Graduate University Study of Mechanical Eng	Graduate University Study of Mechanical Engineering			
Course status	optional	optional			
Year	2.				
ECTS credits and	ECTS student 's workload coefficient	5			
teaching	Number of hours (L+E+S)	30+15+0			

1.1. Course objectives

Knowledge of project management principles. Understanding project planning methods. Knowledge of the basics of project management software.

1.2. Course enrolment requirements

None.

1.3. Expected course learning outcomes

Explain the basic concepts of project management. Compare the vision, strategy and goals when designing a project. Explain what project management is, the tasks of a project manager, the work of project teams and the relationship between project management and organizational structures. Know the models of the project management process. Explain the basic organizational structures of project organizations. Describe the organization of the project. Distinguish methods for project planning by time and/or capacity planning - Gantt charts, network planning techniques. Know the basics of computer project planning.

1.4. Course content

Introduction and basic concepts of project management. Projects - vision, strategy, goals. Project management. Project management. Project management and organizational structures. Project management models. HBS model. Project phases: project definitions and organization, project planning and project monitoring and management. Project planning techniques by time and / or capacity planning - Gantt charts, network planning techniques. Cost management project planning. Human resource management. Computer project planning.

1.5. Teaching methods

lectures
 seminars and workshops
 exercises
 long distance education
 fieldwork

individual assignment
 multimedia and network
 laboratories
 mentorship
 other

1.6. Comments

1.7. Student's obligations

Attendance, control assignments, final exam.

1.8. Evaluation of student's work

Course attendance	1.5	Activity/Participation		Seminar paper	Experimental work	
Written exam	1.5	Oral exam		Essay	Research	
Project		Sustained knowledge check	2	Report	Practice	

Portfolio							
1.9. Proc	cedure and exa	mples of learning outcor	ne asse	ssment in class a	nd at the fir	nal exam	
Attendance,	class participat	ion, continuous assessm	ient, wi	itten exam.			
1.10.	Assigned re	ading (at the time of the	e subm	ssion of study pro	ogramme p	roposal)	
Ikonić, M., Vi	uković, A.: Proj	ect Management, Tehnid	čki faku	ltet, Rijeka, 2011.	. (in Croatia	n)	
1.11.	Optional / c	dditional reading (at the	e time d	f proposing study	/ programn	ne)	
1.12. atte	Number of ending the court	assigned reading copi se	ies witi	h regard to th	e number	of students cu	ırrently
		Title		Numbe	er of copies	Number studen	•
1.13. com	Quality mo opetences	nitoring methods whicl	h ensur	e acquirement	of output	knowledge, ski	lls and
Through the	Institution's qu	ality assurance system.					

Basic description				
Course title	Quality Management and Metrology			
Study programme	Graduate University Study of Mechanical Engineering			
Course status	optional			
Year	2.			
ECTS credits and	ECTS student 's workload coefficient	5		
teaching	Number of hours (L+E+S)	30+30+0		

1.1. Course objectives

The course is designed to provide the student with basic knowledge in quality management and metrology topics. Through individual projects, students are introduced with practical application of several course objectives.

1.2. Course enrolment requirements

None.

1.3. Expected course learning outcomes

Compare different approaches to quality management. Specify implementation of quality management system and international quality standards ISO 90001. Compare models of excellence. Differentiate methods for quality improvement. Assess capability of measurement system. Interpret advanced metrology concepts. Assess quality by statistical process control. Asses risk.

1.4. Course content

History and characteristics of quality management.

Strategies of quality management. Total quality management. Quality planning methods. Quality management system. Methods for quality improvement. Basic and advanced continuous quality improvement tools..

Statistical process control. Control charts. Process capability analysis. Measurement system capability analysis. Reliability and risk management. Quality management in projects.

Process improvement with designed experiments. Full factorial experiments. Fractional factorial experiments.

	🔀 lectures	🔀 individual assignment
1.5. Teaching	seminars and workshops	multimedia and network
<i>methods</i>	🔀 exercises	🔀 laboratories
methous	Iong distance education	🗌 mentorship
	🔀 fieldwork	Other

1.6. Comments

1.7. Student's obligations

Course attendance, active participation in the course, attendance at exercises and fieldwork, seminar paper and independent learning.

1.8. Evaluation of student's work

Course attendance	2	Activity/Participation	Seminar paper	0.75	Experimental work	
Written exam	0.5	Oral exam	Essay		Research	

Project	Sustained knowledge check	1.5	Report	Pra	ctice	
Portfolio	Fieldwork	0.25				
1.9. Procedure	and examples of learning outco	me asses	sment in class ar	nd at the final	exam	
Sustained knowledg	e check and final written exam.					
1.10. Ass	igned reading (at the time of th	e submis	sion of study pro	gramme prop	osal)	
1.11. Opt	ional / additional reading (at th	e time of	proposing study	programme)		
Sons Wiley, 2011. Bilić, B.: Kvaliteta-pl Kondić, Ž., Maglić, L Tehnički fakultet Sv Jay L. Bucher: The N Smith, G. T.: Industr	Jennings, C. L., Pfund, M. E.: Ma aniranje, analiza i upravljanje, F ., Pavletić, D.: Kvaliteta 1, 2, 3, S eučilišta u Rijeci, 2018 Metrology Handbook, ASQ Quali ial Metrology, Springer, 2002. Mber of assigned reading cop	ESB, 201 Sveučilišt ty Press,	6. e Sjever, Strojars 2004.	iki fakultet Slav	vonski Brod,	- -
attending t		ies with	regula to the	e number oj	students cu	menu
	Title		Numbe	r of copies	Number studen	-

1.13. Quality monitoring methods which ensure acquirement of output knowledge, skills and competences

	Basic description				
Course title	Refrigeration				
Study programme	Graduate University Study of Mechanical Engi	neering			
Course status	optional				
Year	2.				
ECTS credits and	ECTS student 's workload coefficient	5			
teaching	Number of hours (L+E+S)	45+30+0			

1.1. Course objectives

Assuming theoretical knowledge and development of skills for practical solving of problems in design and application of refrigeration equipment and systems.

1.2. Course enrolment requirements

None.

1.3. Expected course learning outcomes

Analyze and calculate thermodynamic processes, distinguish and describe different designs of compression and sorption cooling devices. Describe the properties of refrigerants and heat transfer substances in refrigeration, compare methods of their application and environmental impact. Interpret the thermodynamic basics of refrigeration compressors, describe specific properties important for the application and control of compressors in refrigeration systems. Describe the design features and interpret the role, method of regulation and application of evaporators and condensers. Describe the design featurs and interpret the application of control devices, expansion devices, fittings and pipelines in refrigeration. Describe processes and devices with jet blowers, thermoelectric cooling, cooling with dry ice and application of cooling mixtures. Describe the performance, analyze and calculate the processes of gas liquefaction devices. Describe the method of construction and design of thermal insulation of cold stores, and calculate the required cooling effect for the cold store. Describe the integration of refrigeration units and heat pumps into heating, cooling and air conditioning systems.

1.4. Course content

Refrigeration applications. Processes, thermodynamic basic calculations and performance of compression and absorption refrigeration devices. Direct cooling systems and heat transfer medium systems. Refrigerants. Thermodynamic basics of refrigeration compressors operation, application and control in refrigeration systems. Performances, application and calculation of heat exchangers in refrigeration equipment. Design, application and calculation of expansion devices, fittings and pipelines for the refrigerant. Operating characteristics and control of refrigeration systems. Coolers with jet blowers. Thermoelectric cooling. Cooling mixtures. Liquefaction of gases. Construction, thermal insulation and calculation of cooling capacity of cold stores. Integration of cooling devices and heat pumps into heating, cooling and air conditioning systems. An elective project from the course content is planned.

1.5. Teaching methods	 lectures seminars and workshops exercises long distance education fieldwork 	 individual assignment multimedia and network laboratories mentorship other
1.6. Comments	-	

1.7. Student'	s obliga	tions						
Course attendance	ce, activi	ity, studying.						
1.8. Evaluatio	on of stu	ident's work						
Course attendance	2.5	Activity/Participation		Semina	r paper	Exp woi	erimental rk	
Written exam	0.5	Oral exam	0.5	Essay		Res	earch	
Project		Sustained knowledge check	1.5	Report		Pra	ctice	
Portfolio		Homework						
1.9. Procedu	re and e	xamples of learning outcor	ne ass	essment i	n class and at t	the find	ıl exam	
Activity, continuo	ous knov	vledge testing (two mid-ter	m exa	ms), writt	ten and oral ex	am.		
	-	<i>reading (at the time of the</i> n, (lectures), https://mood		-	study program	me pro	pposal)	
Bošnjaković, F.: T	hermod	ynamics I, (book), Tehnička	a knjiga	a, Zagreb,	1970. (in Croa	tian)		
Bošnjaković, F.: T	hermod	ynamics II, (book), Tehničk	a knjig	a, Zagreb	, 1976. (in Croa	atian)		
Bošnjaković, F.: T	hermod	ynamics III, (book), Tehničk	ka knjig	ga, Zagrek	o, 1986. (in Cro	atian)		
1.11. C)ptional	/ additional reading (at the	e time	of propos	ing study prog	ramme	?)	
ASHRAE: 2018 AS Ciconkov, R.: Refr	HRAE H	buch der Kältetechnik, Bd. ANDBOOK- REFRIGERATIO n :solved examples, (book) ji, (book), Mašinski fakulte	N, (boo , Facu	ok) ASHRA Ity of Med	AE Atlanta, 201 Chanical Engine	8.		
-	lumber	of assigned reading copi				nber o	f students cu	urrently
Title Number of copies Number of students					-			
Pavković, B.: Refrigeration, (lectures), https://moodle.srce.hr unlimited								
Bošnjaković, F.: Thermodynamics I, (book), Tehnička knjiga, Zagreb, 1970. (in Croatian)			а,	20				
Bošnjaković, F.: T Zagreb 1976. (in (ynamics II, (book), Tehničk)	a knjig	a,	11			
Bošnjaković, F.: T Zagreb, 1986. (in		ynamics III, (book), Tehniči 1)	ka knji	ga,	10			

Quality monitoring methods which ensure acquirement of output knowledge, skills and 1.13. competences

	Basic description				
Course title	Renewable Energy Sources				
Study programme	Graduate University Study of Mechanical Engineering				
Course status	optional				
Year	2.				
ECTS credits and	ECTS student 's workload coefficient	5			
teaching Number of hours (L+E+S) 45+30+0					

1.1. Course objectives

Within the course students acquire theoretical knowledge and skills that are required to solve practical problems related to the design and use of renewable energy systems.

1.2. Course enrolment requirements

None.

1.3. Expected course learning outcomes

Explain current knowledge of the impact of energy processes on the Earth's ecosystem. Comment the measures and actions for pollution reduction and environmental protection, consistent with the objectives of international climate protection initiatives. Discuss the energy potential and economics of application of renewable energy sources. Interpret designs, construction and principle of operation of solar thermal collectors, photovoltaic modules, heat pumps, fuel cells, wind turbines / power plants, geothermal and hydroelectric power plants. Differentiate active and passive solar energy systems. Explain the characteristics of passive solar architecture. Apply acquired knowledge to calculate and select the basic elements of active solar systems and systems with heat pumps. Describe designs of biomass energy systems. Analyze the feasibility of application of renewable energy sources. Apply acquired knowledge to solve practical problems.

1.4. Course content

Sources and forms of energy. Earth's ecosystems. Ecological footprint. Ozone depletion. Global warming. Measures and actions for pollution reduction and environmental protection. Montreal and Kyoto protocol. Characteristics of renewable energy sources. Energy potential and economics of renewable energy use. Solar energy. Active and passive solar systems. Solar thermal collectors. Solar concentrators. Photovoltaic systems. Passive solar architecture. Heat pumps. Geothermal energy. Wind energy. Biomass. Hydrogen as a potential fuel of the future. Fuel cells. Hydro energy. Combined use of conventional and renewable energy sources. Calculations and sizing of renewable energy systems.

earearations and signify	of renewable energy systems		
1.5. Teaching methods	 lectures seminars and worksho exercises long distance educatio fieldwork 	ops 🗌 multime 🔤 laborato	
1.6. Comments			
1.7. Student's obl	igations		
Course attendance, ad	tivity, homework, studying.		
1.8. Evaluation of	student's work		
Course 2.	5 Activity/Participation	Seminar paper	Experimental

attendance				work	
Written exam	Oral exam	0.5	Essay	Research	
Project	Sustained knowledge check	1.5	Report	Practice	
Portfolio	Homework	0.5			

1.9. Procedure and examples of learning outcome assessment in class and at the final exam

Course attendance, activity, homework, continuous knowledge testing (two mid-term exams), written and oral exam.

1.10. Assigned reading (at the time of the submission of study programme proposal)

1.11. Optional / additional reading (at the time of proposing study programme)

Group of authors: Buildings Energy Certification Handbook, UNDP, 2010. (in Croatian) Majdandžić, Lj.: Solar Systems, Graphis d.o.o., Zagreb, 2010. (in Croatian)

Labudović, B. et al.: Fundamentals of Photovoltaic Systems, Energetika marketing, Zagreb, 2011. (in Croatian) Labudović, B. et al.: Fundamentals of Heat Pumps Application, Energetika marketing, Zagreb, 2009. (in Croatian)

Labudović, B. et al.: Fundamentals of Biomass Aplication, Energetika marketing, Zagreb, 2012. (in Croatian)

1.12. atte	Number of assigned reading copies with re ending the course	egard to the number o	f students currentl
	Title	Number of copies	Number of students
1.13. con	Quality monitoring methods which ensure npetences	acquirement of output k	nowledge, skills an

	Basic description			
Course title	Robot Elements Design			
Study programme	Graduate University Study of Mechanical Engineering			
Course status	optional			
Year	1.			
ECTS credits and	ECTS student 's workload coefficient	5		
teaching	Number of hours (L+E+S)	30+30+0		

1.1. Course objectives

Introduction to main parts of robots and manipulators, their construction, design and dimensioning.

1.2. Course enrolment requirements

None.

1.3. Expected course learning outcomes

Robot workspace and degrees of freedom of movement analysis. Dimensioning the main parts of robots and manipulators (selection criteria and dimensioning of drives, gears, guidance, workspace design, motion planning...).

1.4. Course content

Types of industrial robots and manipulators. Pedestal, guidance, turning units drive, mechanism for straight and parallel guidance. Turning arm drives. Joints and workspace. Drives of robots and manipulators. Power and cinematic transmissions in robots and manipulators. Bearings and couplings. Gripers.

1.5. Teaching methods	 lectures seminars and workshops exercises long distance education fieldwork 	 individual assignment multimedia and network laboratories mentorship other
1.5.5		

- 1.6. Comments
- 1.7. Student's obligations

Course attendance, constructive work and seminars, continuous knowledge testing.

Course attendance	2	Activity/Participation		Seminar paper	0.5	Experimental work	
Written exam	0.5	Oral exam		Essay		Research	
Project	1	Sustained knowledge check	1	Report		Practice	
Portfolio							
1.9. Procedu	re and e	examples of learning outco	me ass	essment in class an	nd at th	e final exam	
Constructive wor	k and se	eminars, continuous knowl	ledge te	esting, written exar	n.		

1.10. Assigned reading (at the time of the submission of study programme proposal)

Paul E. Sandin: Robot Mechanisms and Mechanical Devices Illustrated, McGraw-Hill, 2003. John J. Craig: Introduction to robotics mechanics and control second edition, Pearson Education International, 2005.

Bruno Siciliano, Oussama Khatib: Springer Handbook of Robotics, Springer 2008. Lecture materials

1.11.	Optional / additional reading (at the time of proposing study programme)

1.12. Number of assigned reading copies with regard to the number of students currently attending the course

Title	Number of copies	Number of students
Paul E. Sandin: Robot Mechanisms and Mechanical Devices Illustrated, McGraw-Hill, 2003.	1	15
John J. Craig: Introduction to robotics mechanics and control second edition, Pearson Education International, 2005.	1	15
Bruno Siciliano, Oussama Khatib: Springer Handbook of Robotics, Springer 2008.	1	15
Lecture materials	web	15

1.13. Quality monitoring methods which ensure acquirement of output knowledge, skills and competences

Basic description				
Course title	Ship Outfitting and Repair			
Study programme	Graduate University Study of Mechanical Engineering			
Course status	optional	optional		
Year	2.			
ECTS credits and	ECTS student 's workload coefficient	5		
teaching	Number of hours (L+E+S)	45+15+0		

1.1. Course objectives

Introduction to documentation and procedures of fabrication and installation of the ship equipment, as well as to monitoring work execution, quality control, testing and monitoring ship outfitting costs in accordance with defined learning outcomes.

1.2. Course enrolment requirements

None.

1.3. Expected course learning outcomes

Explain and interpret the significance and complexity of ship outfitting and its structure and sequence. Apply the breakdown of the ship and the basic tenets of the ship outfitting process. Argue the benefits of outfitting ship sections and modular outfitting. Use adequate documentation in the process of ship outfitting. Analyze technological solutions for ship outfitting, outfitting process, quality control, testing procedures and costs. Develop a basic scheduler of outfitting works, estimate required man hours, and the calculation of the required workforce by profession and a list and plan of outfitting activities. Describe the technological process of ship outfitting regarding ship piping workers, mechanics, electricians, locksmiths, metalworkers, insulation workers and painters. Interpret and use curriculum of ship trial process. Define and describe the repair works and services. Describe the technological processes of ship repair. Distinguish types of docks and docking procedures.

1.4. Course content

Meaning and scope of ship outfitting. Product work breakdown structure. Basic scheme of ship outfitting process. Technological solutions and improvement of ship outfitting. Modular and advance ship outfitting. Structure, division and sequences of outfitting. Making a list and a plan of outfitting works. Monitoring the execution of works, quality, testing and direct costs. Piping works. Pipe blocks Installation of ship main engine, shaft and other machinery and equipment. Processing and installation of propeller shaft and rudder bearing. Installation of ship electrical equipment. Installation of ship cables. Description of metalwork, carpenter works, insulation and painting works. Monitoring the outfitting works and repairs, inspections, tests and ship trial. The purpose and reasons for the ship repair. Breakdown and description of ship repair. Repair facilities capacities and their utilization. Docks. Works and services in docking and ship repair. Ship Demolition and Recycling activities.

1.5. Teaching methods	 lectures seminars and workshops exercises long distance education fieldwork 	 individual assignment multimedia and network laboratories mentorship other
1.6. Comments		

1.7. Student's obligations

Course attendance, activity, sustained knowledge check, seminar paper, studying.

1.8. Evaluation of student's work

Course attendance	2	Activity/Participation		Seminar paper	1	Experimental work	
Written exam	0.5	Oral exam	0.5	Essay		Research	
Project		Sustained knowledge check	1	Report		Practice	
Portfolio							

1.9. Procedure and examples of learning outcome assessment in class and at the final exam

Course attendance, activity at lectures and laboratory practice, sustained knowledge check (two mid-term exams), seminar paper, written and oral exam or their combination.

1.10. Assigned reading (at the time of the submission of study programme proposal)

Matulja, T.: Teaching material published on e-learning course Skip Outfitting and Repair, 2021. Butler, D., Guide to Ship Repair Estimates, Butterworth Heinemann, Oxford, 2000. House, D.J., Dry Docking and Shipboard Maintenance, Witherby & Co. Ltd., London, 2003.

1.11. Optional / additional reading (at the time of proposing study programme)

Marušić, I.: Piping in Shipbuilding, Školska knjiga, Zagreb, 1983. (in Croatian) Čujić, M.: Metalworks in Shipbuilding, Školska knjiga, Zagreb, 1984. (in Croatian)

ujic, IVI.: Metalworks in Shipbuliding, Skolska knjiga, Zagreb, 1984. (in Croatian)

1.12. Number of assigned reading copies with regard to the number of students currently attending the course

Title	Number of copies	Number of students
Matulja, T.: Teaching material published on e-learning course Skip Outfitting and Repair, 2021.		
Butler, D., Guide to Ship Repair Estimates, Butterworth Heinemann, Oxford, 2000.	1	26
House, D.J., Dry Docking and Shipboard Maintenance, Witherby & Co. Ltd., London, 2003.	1	26

1.13. Quality monitoring methods which ensure acquirement of output knowledge, skills and competences

Basic description					
Course title	Ship Propulsion Devices				
Study programme	Graduate University Study of Mechanical Engineering				
Course status	optional	optional			
Year	2.				
ECTS credits and	ECTS student 's workload coefficient	5			
teaching	Number of hours (L+E+S)	30+30+0			

1.1. Course objectives

The acquisition of specific competencies dealing with the ship propulsion devices. Ability to solve a given problem in order to determine the required required ship's main engine power and the propeller characteristics.

1.2. Course enrolment requirements

None.

1.3. Expected course learning outcomes

Describe the phenomena in the water flow around the ship's hull. Distinguish components of ship resistance. Describe the main characteristics of screw propellers and explain the theory of propeller action. Describe the propeller model tests. Explain the interaction of the main engine and propeller, and analyze the relationship between ship resistance and propulsion. Preliminary calculation of the ship screw propeller of a chosen ship. Describe the impact of the propulsion engine and the srew propeller characteristics on the requirements for the energy efficiency of the ship.

1.4. Course content

Ship resistance. Flow past ship hull. Displacement, semi-displacement and planing regimes. Components of ship resistance. Methods for determining ship resistance. Model tests. Ship propulsion. Ship propulsion devices. Ship screw propeller. Geometry of the screw propeller. Theory of propeller action. Interaction between hull and propeller. Components of propulsive efficiency. Propeller model tests. Propeller cavitation. Matching the propeller and engine. Propeller design. Propeller manufacturing. Propeller materials. Propeller blade strength. Propeller blade vibrations. Propeller operational problems. Special types of propellers: ducted propellers, controllable pitch propeller, tandem and contra-rotating propellers. Other types of propulsion devices: oar, sail, paddle wheel, vertical-axis propellers, waterjets, transverse and azimuthing thrusters, podded propellers. Energy efficiency of the ship.

/1	<u> </u>	<u> </u>				
1.5. Teaching methods		 lectures seminars and worksho exercises long distance educatio fieldwork 	al assignment dia and network ries hip			
1.6. Commen	ts					
1.7. Student's	s obliga	tions				
Attendance at lect	tures, a	ctivity in class, project assig	gnment	, self learning.		
1.8. Evaluatio	on of stu	ident's work				
Course	2	Activity/Participation	0.5	Seminar paper	Experimental	

attendance					work	
Written exam	0.5	Oral exam	0.5	Essay	Research	
Project	0.5	Sustained knowledge check	1	Report	Practice	
Portfolio						

1.9. Procedure and examples of learning outcome assessment in class and at the final exam

Class attendance, class activity, prject assignment, continuous knowledge assessment (mid-term exams), written and oral examination.

1.10. Assigned reading (at the time of the submission of study programme proposal)

Carlton, J. S., Marine Propellers and Propulsion, Butterworth - Heinemann, Oxford, 2007.

Molland, A.F., Turnock, S.R., Hudson, D.A.: Ship Resistance and Propulsion - Practical Estimation of Propulsive Power, Cambrodge University Press, New York, 2011.

Birk, L., Funfdamentasls of Ship Hydrodynamics: Fluid Mechanics, Ship Resistance and Propulsion, John Wiley & Sons Ltd., Hoboken, 2019.

Lewis, E. V., (ed.), Principles of Naval Architecture, Vol. II - Resistance, Propulsion and Vibration, The Society of Naval Architects and Marine Engineers, Jersey City, 1988.

1.11. Optional / additional reading (at the time of proposing study programme)

Allison, J., Marine Waterjet Propulsion, SNAME Transactions, Vol. 101, 1993.

Sentić, A., Fancev, M., Ship Resistance and Propulsion Problems, Brodogradnja, Zagreb, 1956. (in Croatian)

1.12. Number of assigned reading copies with regard to the number of students currently attending the course

Title	Number of copies	Number of students
Carlton, J. S., Marine Propellers and Propulsion, Butterworth - Heinemann, Oxford, 2007.	1	7
Molland, A.F., Turnock, S.R., Hudson, D.A.: Ship Resistance and Propulsion - Practical Estimation of Propulsive Power, Cambrodge University Press, New York, 2011.	1	7
Lewis, E. V., (ed.), Principles of Naval Architecture, Vol. II - Resistance, Propulsion and Vibration, The Society of Naval Architects and Marine Engineers, Jersey City, 1988.	1	7
Birk, L., Funfdamentasls of Ship Hydrodynamics: Fluid Mechanics, Ship Resistance and Propulsion, John Wiley & Sons Ltd., Hoboken, 2019.	1	7

1.13. Quality monitoring methods which ensure acquirement of output knowledge, skills and competences

Basic description						
Course title	Ship Systems	Ship Systems				
Study programme	Graduate University Study of Mechanical Eng	Graduate University Study of Mechanical Engineering				
Course status	optional	optional				
Year	1.					
ECTS credits and	ECTS student 's workload coefficient	5				
teaching	Number of hours (L+E+S)	45+15+0				

1.1. Course objectives

Obtaining theoretical knowledge and develop skills to solve practical problems in the field of ship systems and design of ship systems.

1.2. Course enrolment requirements

None.

1.3. Expected course learning outcomes

Define and analyze ship propulsion systems of ships with diesel engine propulsion plants. Describe ship propulsion systems of ships with turbine propulsion. Describe and analyze ship ballast and bilge systems. Describe ship sanitary systems and fresh water systems. Describe and compare systems for cargo loading and unloading. Describe and analyze ship systems for cargo heating. Describe and compare ship fire fighting systems. Describe ship systems on LNG tankers.

1.4. Course content

Generally on ship systems. Rules for design, building and maintenance of ship systems. Fuel oil systems. Ship cooling systems. Compressed air systems. Lubrication oil systems. Other ship engine systems. Ballast systems. Bilge systems. Sanitary systems. Fire fighting systems. Other ship common systems. Systems for cargo loading and unloading. Inert gas systems. Tank cleaning systems. Special systems on chemical tankers. Special systems on LNG and LPG ships. Ship control systems.

	🛛 lectures	🔀 individual assignment
1.5. Teaching	seminars and workshops	multimedia and network
1.3. Teaching methods	🔀 exercises	laboratories
methous	Iong distance education	mentorship mentorship
	🔀 fieldwork	Other

1.6. Comments

1.7. Student's obligations

Course attendance, activity, homework, studying.

1.8. Evaluation of student's work							
Course attendance	2	Activity/Participation		Seminar paper	0.25	Experimental work	
Written exam		Oral exam	0.75	Essay		Research	
Project		Sustained knowledge check	2	Report		Practice	
Portfolio							

1.9. Procedure and examples of learning outcome assessment in class and at the final exam

Course attendance, seminar paper, continuous knowledge testing (two mid-term exams), oral or written exam.

1.10. Assigned reading (at the time of the submission of study programme proposal)

Ozretić, V.: Marine Auxiliary Machinery and Devices, Dalmacijapapir, Split, 1996. (in Croatian) Martinović, D.: Marine Machinery Systems, Digital point, Rijeka, 2005. (in Croatian)

1.11. Optional / additional reading (at the time of proposing study programme)

Smith, D. W.: Marine Auxiliary Machinery, Butterworths, London, 1988. Knak, C.: Diesel Motor Ships, Engines and Machinery, Institute of Marine Engineers, 1990.

1.12.	Number of	assigned	reading	copies	with	regard	to	the	number	of	students	currently	,
attend	ding the cours	se											

Title	Number of copies	Number of students
Ozretić, V.: Marine Auxiliary Machinery and Devices, Dalmacijapapir, Split, 1996. (in Croatian)	8	30
Martinović, D.: Marine Machinery Systems, Digital point, Rijeka, 2005. (in Croatian)	3	30
1.13. Quality monitoring methods which ensure acqu	lirement of output k	nowledge, skills and

competences

Basic description					
Course title	Stability of Structures				
Study programme	Graduate University Study of Mechanical Engineering				
Course status	optional	optional			
Year	2.				
ECTS credits and	ECTS student 's workload coefficient	5			
teaching	Number of hours (L+E+S)	30+30+0			

1.1. Course objectives

Developing knowledge and skills for autonomous assessing of external load levels at which structural deformation forms become unstable.

1.2. Course enrolment requirements

Basic knowledge of solid mechanics.

1.3. Expected course learning outcomes

Define structural stability problems. Describe goals of linear and nonlinear stability. Define global and local stabilities of structures. Analyse flexural, torsional and torsional-flexural stability of columns. Analyse lateral-torsional stability of beams. Calculate the critical buckling load of columns and beams. Design of structures according to the Eurocode.

1.4. Course content

Classification of structural stability problems. Linear and nonlinear stability analysis. Global and local instabilities. Flexural, torsional and torsional-flexural buckling of columns. Lateral-torsional buckling of beams. Stability of frames. Stability of arches and rings. Stability of rods under varying load. Stability of thin plates. Application of approximate methods. Application of finite element method and computer applications.

1.5. Teaching methods	 lectures seminars and workshops exercises long distance education fieldwork 	 individual assignment multimedia and network laboratories mentorship other
1.6. Comments	-	

1.7. Student's obligations

Course attendance, activity, homework, studying.

1.8.	Evaluation	of student's	work
------	------------	--------------	------

Course attendance	2	Activity/Participation		Seminar paper	1	Experimental work	0.5
Written exam	1	Oral exam	0.5	Essay		Research	
Project		Sustained knowledge check		Report		Practice	
Portfolio							

1.9. Procedure and examples of learning outcome assessment in class and at the final exam

Homeworks and seminars. Written and oral exam.

1.10. Assigned reading (at the time of the submission of study programme proposal)

-

1.11. Optional / additional reading (at the time of proposing study programme)

Simitses, G. J., Hodges, D. H.: "Fundamentals of Structural Stability", Butterworth-Heinemann, Amsterdam, 2006.

Trahair, N.S., Bradford, M.A., Nethercot, D.A., Gardner, L.: "The Behaviour and Design of Steel Structures to EC3", Taylor & Francis, London, 2008.

Gambhir, M. L.: "Stability Analysis and Design of Structures", Springer-Verlag, Berlin, 2004.

Chen W. F., Lui, E. M.: "Structural Stability", Prentice Hall, Upper Saddle River, New Jersey, 1987.

Čaušević, M., "Statika i stabilnost konstrukcija", Školska knjiga, Zagreb, 2003.

Mihanović, A.: "Stabilnost konstrukcija", DHGK, Zagreb, 1993.

1.12. Number of assigned reading copies with regard to the number of students currently attending the course

	Title		Number of copies	Number of students	
	-		-	-	
	-		-	-	
1.13. Quality monitoring methods which ensure acquirement of output knowledge, skills and competences					
Through the	Institution's quality assurance system.				

Basic description					
Course title	Strength of Materials II				
Study programme	Graduate University Study of Mechanical Engineering				
Course status	compulsory				
Year	1.				
ECTS credits and	ECTS student 's workload coefficient	7			
teaching	Number of hours (L+E+S)	45+30+0			

1.1. Course objectives

Developing knowledge and skills for autonomous stress/strain analyses and determining dimensions and materials of load-carrying structures and their components.

1.2. Course enrolment requirements

Basic knowledge of solid mechanics.

1.3. Expected course learning outcomes

Explain Cauchy stress tenzor. Determine Cauchy's stress equations (Cauchy's formula). Determine static and dynamic equations of equilibrium. Explain displacement gradient tensor and small strain tensor. Define and explain constitutive equations. Eplain generalized Hooke's and Duhamel-Neumann's laws. Define constitutive equations for axisymmetric planar problems. Determine stress and strain at thin- and thick-walled cylinders. Explain energy conservation law. Define strain energy. Explain and apply energy methods: Betti's and Maxwell's reciprocity theorems, virtual work principles, principle of total potential energy, principle of complementar potential energy, Castigliano's theorems, Mohr's theorem. Explain three-moment equation for continuous beams. Determine and analyse distribution of internal forces at continuous beams. Define sources of dynamic stress and characteristcs of a stress cycle. Explain notion of fatigue strength. Explain types of dynamic loads. Explain notions of geometric and material nonlinearities. Define constitutive equations for materially nonlinear problems. Define idealized stress-strain diagrams. Determine ultimate limit-load of structures. Large displacements and finite strains: define stress tensors, deformation gradient, deformation tensors and strain tensors.

1.4. Course content

Stress. Strain. Constitutive equations. Energy methods. Continuous beams. Dynamic stresses. Analysis of structures under dynamic loadings. Elastic-plastic analysis of structures. Large displacements and geometric nonlinearity.

1.5. Teaching methods		 lectures seminars and worksho exercises long distance educatio fieldwork 	on 🗌	individual ass multimedia a laboratories mentorship other	•	
1.6. Comment	S	-				
1.7. Student's	obligat	ions				
Course attendance	, labor	atory exercises, final exam,	self-studying			
1.8. Evaluation of student's work						
Course	2.5	Activity/Participation	Seminar pa	per	Experimental	0.5

attendance						work	
Written exam	1.5	Oral exam	1	Essay		Research	
Project		Sustained knowledge check	1.5	Report		Practice	
Portfolio							
1.9. Procedu	ire and e	examples of learning outco	ome ass	essment in c	ass and at the	final exam	
Course attendan	ce. Cont	inuous knowledge testing	. Labora	atory exercise	es. Written and	l oral exam.	
1.10. A	Assigned	reading (at the time of th	ne subr	nission of stu	dy programme	proposal)	
-							
1.11. (Optional	/ additional reading (at th	ne time	of proposing	study program	nme)	
	G.: "Stre	ength of Materials I" (in Cr	oatian),	University o	f Rijeka, Facult	y of Engineerir	ng, Rijeka
2004. Alfirević, I.: "Stre Śimić, V.: "Streng Reddy, J. N.: "End ersey, 2002. Dym, C. L., Sham	ngth of I gth of Ma ergy Prin es, I. H.:	ength of Materials I" (in Cr Materials II" (in Croatian), aterials II" (in Croatian), Šk iciples and Variational Me <u>"Solid Mechanics, A Varia</u> of assigned reading cop	Golden kolska k thods ir tional A	marketing, njiga, Zagrek Applied Me Approach", Sj	Zagreb, 1999. , 1995. chanics", John pringer, New Yo	Wiley & Sons, ork, 2013	New
2004. Alfirević, I.: "Streng Šimić, V.: "Streng Reddy, J. N.: "End lersey, 2002. Dym, C. L., Sham 1.12. /	ngth of I gth of Ma ergy Prin es, I. H.:	Materials II" (in Croatian), aterials II" (in Croatian), Šk iciples and Variational Me "Solid Mechanics, A Varia of assigned reading cop	Golden kolska k thods ir tional A	marketing, njiga, Zagrek Applied Me Approach", Sj	Zagreb, 1999. , 1995. chanics", John pringer, New Yo	Wiley & Sons, ork, 2013 r of students	New current
2004. Alfirević, I.: "Streng Šimić, V.: "Streng Reddy, J. N.: "End lersey, 2002. Dym, C. L., Sham 1.12. /	ngth of I gth of Ma ergy Prin es, I. H.: Number	Materials II" (in Croatian), aterials II" (in Croatian), Šk iciples and Variational Me "Solid Mechanics, A Varia of assigned reading cop	Golden kolska k thods ir tional A	marketing, njiga, Zagreb Applied Me Approach", Sj th regard to	Zagreb, 1999. , 1995. chanics", John pringer, New Yo	Wiley & Sons, ork, 2013 r of students	New current
2004. Alfirević, I.: "Stre Śimić, V.: "Streng Reddy, J. N.: "End ersey, 2002. Dym, C. L., Sham 1.12. /	ngth of I gth of Ma ergy Prin es, I. H.: Number	Materials II" (in Croatian), aterials II" (in Croatian), Šk iciples and Variational Me "Solid Mechanics, A Varia of assigned reading cop purse	Golden kolska k thods ir tional A	marketing, njiga, Zagreb Applied Me Approach", Sj th regard to	Zagreb, 1999. , 1995. chanics", John pringer, New Yo the numbe	Wiley & Sons, ork, 2013 r of students	New current
2004. Alfirević, I.: "Streng Šimić, V.: "Streng Reddy, J. N.: "End lersey, 2002. Dym, C. L., Sham 1.12. /	ngth of I gth of Ma ergy Prin es, I. H.: Number	Materials II" (in Croatian), aterials II" (in Croatian), Šk iciples and Variational Me "Solid Mechanics, A Varia of assigned reading cop purse	Golden kolska k thods ir tional A	marketing, njiga, Zagreb Applied Me Approach", Sj th regard to	Zagreb, 1999. , 1995. chanics", John pringer, New Yo the numbe	Wiley & Sons, ork, 2013 r of students	New current
2004. Alfirević, I.: "Stre šimić, V.: "Streng Reddy, J. N.: "End lersey, 2002. Dym, C. L., Sham 1.12. /	ngth of I gth of Ma ergy Prin es, I. H.: Number	Materials II" (in Croatian), aterials II" (in Croatian), Šk iciples and Variational Me "Solid Mechanics, A Varia of assigned reading cop purse	Golden kolska k thods ir tional A	marketing, njiga, Zagreb Applied Me Approach", Sj th regard to	Zagreb, 1999. , 1995. chanics", John pringer, New Yo the numbe	Wiley & Sons, ork, 2013 r of students	New current
2004. Alfirević, I.: "Stre šimić, V.: "Streng Reddy, J. N.: "End lersey, 2002. Dym, C. L., Sham 1.12. /	ngth of I gth of Ma ergy Prin es, I. H.: Number	Materials II" (in Croatian), aterials II" (in Croatian), Šk iciples and Variational Me "Solid Mechanics, A Varia of assigned reading cop purse	Golden kolska k thods ir tional A	marketing, njiga, Zagreb Applied Me Approach", Sj th regard to	Zagreb, 1999. , 1995. chanics", John pringer, New Yo the numbe	Wiley & Sons, ork, 2013 r of students	New current

Basic description					
Course title	Systematic Engineering Design and Product Development				
Study programme	Graduate University Study of Mechanical Engineering				
Course status	optional				
Year	1.				
ECTS credits and	ECTS student 's workload coefficient	5			
teaching	Number of hours (L+E+S)	30+30+0			

1.1. Course objectives

Acquiring competence in systematic and methodical approach to products design and development. Developing abilities to apply and implement modern concepts and methods of product design and development. Successful participation in team-based product design. Developing of creativity and criticism.

1.2. Course enrolment requirements

None.

1.3. Expected course learning outcomes

Define and describe product design process phases and wider concept of product development. Explain the function of a technical product. Differentiate variant, adaptive and new designs. Compare and select methods of searching for solutions. Evaluate design variants. Define and describe size ranges and modular products. Explain design principles on examples. Quote and explain rules of the embodiment design regarding selected criteria. Solve design problem by implementation of acquired knowledge and skills.

1.4. Course content

Design theory and modern product development concepts and approaches. Technical systems. Function of a technical system. Types of designs. Product design and development process. Product planning and clarifying the task. Conceptual design. Searching for working principles. Conventional, intuitive and discursive methods of finding design solutions. Embodiment design. Detail design. Evaluation. Size ranges and modular products. Principles of design: clarity, simplicity and safety. Principles of force transmission, division of tasks, self-help and stability. Design rules. Methodical and systematic materials selection. Design for X (environment protection, ergonomy, expenses,...).

	, 1	
1.5. Teaching methods	 X lectures seminars and workshops X exercises long distance education 	X individual assignment multimedia and network laboratories mentorship
	fieldwork	X other teamwork
1.6. Comments	-	

1.7. Student's obligations

Course attendance, activity, solving design problems autonomous and in team, studying.

1.8. Evaluation of student's work

Course attendance	2	Activity/Participation		Seminar paper	Experimental work	
Written exam	0.5	Oral exam		Essay	Research	
Project	1.5	Sustained knowledge	1	Report	Practice	

		check							
Portfolio									
1.9. Procedure and examples of learning outcome assessment in class and at the final exam									
Course attendance, mid-term exams, design project, final written exam.									
1.10. Assigned reading (at the time of the submission of study programme proposal)									
Course materials a	and lect	ure notes.							
Križan, B.: Osnove	e prorač	una i oblikovanja konstruko	cijskih	elemenat	ta, Školska	knjiga	, Zagre	b, 2008.	
1.11. O	ptional	/ additional reading (at the	e time	of propos	sing study	progra	mme)		
 Mattson, C.A.; Sorensen, C.D.: Product Development - Principles and Tools for Creating Desirable and Transferable Designs, Springer, Cham, 2020. Pahl, G.; Beitz, W.: Engineering Design, Springer, London, 1996. 1.12. Number of assigned reading copies with regard to the number of students currently attending the course 									
		Title			Number	of cop	ies	Number student	
Križan, B.: Fundamentals of Calculation and Design of Machine416Elements, Školska knjiga, Zagreb, 2008.416									
1.13. Quality monitoring methods which ensure acquirement of output knowledge, skills and competences									
Through the Instit	ution's	quality assurance system.							

Basic description						
Course title	Systems and Data Analysis					
Study programme	Graduate University Study of Mechanical Eng	Graduate University Study of Mechanical Engineering				
Course status	optional					
Year	2.					
ECTS credits and	ECTS student 's workload coefficient	5				
teaching	Number of hours (L+E+S)	30+30+0				

1.1. Course objectives

Developing skills for collecting, recognizing and performing basic analysis and classification of data. Getting acquainted with basic methods for statistical analysis, time-series analysis, and sensitivity analysis. Understanding methods of artificial intelligence such as artificial neural networks and classification methods. Acquiring experience in managing and analyzing large, complex data structures, complex systems and stochastic systems. Adopting the knowledge needed to apply analytical methods to technical systems and data. Understanding the basic ideas of substitute (surrogate) models and mastering the skills required for their implementation and use.

1.2. Course enrolment requirements

None.

1.3. Expected course learning outcomes

Independently implement a computer program for data collection and filtering. Perform basic statistical data analysis and filter and correct errors in data. Use artificial intelligence (artificial neural networks and classification methods) in data analysis. Create moderately complex computer programs for time-series analysis, complexity and sensitivity analysis and visualization of analytical results. Model and analyze stochastic systems.

1.4. Course content

Data collection. Basic statistical analysis. Data errors and data filtering. Interpolation of data by using artificial neural networks. Classification of data. Analysis of time-series and dynamic systems. Methods for analyzing system sensitivity and chaosiness. Complex systems and big data. Probabilistic and stochastic systems. Basic surrogate models and their implementation. Analytical visualization. Examples in engineering.

1.5. Teaching methods	 lectures seminars and workshops exercises long distance education 	 individual assignment multimedia and network laboratories mentorship
	🗌 fieldwork	other

- 1.6. Comments
- 1.7. Student's obligations

Lectures, practice, homework, seminar, E-learning, consultation.

1.8. Evaluation of student's work

Course attendance	2	Activity/Participation		Seminar paper	Experimental work	
Written exam	1.5	Oral exam	0.5	Essay	Research	

Project	1	Sustained knowledge check	Report	Practice	
Portfolio		Homework			

1.9. Procedure and examples of learning outcome assessment in class and at the final exam

Course attendance, continuous knowledge check, making a project, preparing and presenting results, oral exam.

1.10. Assigned reading (at the time of the submission of study programme proposal)

Ian H.Witten, Eibe Frank, Mark A. Hall: Data mining: Practical machine learning tools and techniques, Morgan Kaufmann, 2016.

Alexander I.J. Forrester, Andreas Sobester, Andy J. Keane: Engineering design via surrogate modelling: A practical guide, Wiley, 2008.

A. Katok, B. Hasselblatt: Introduction to the Modern Theory of Dynamical Systems, Cambridge University Press, 1995.

1.11.	Optional / additional reading (at the time of proposing study programme)
	optionally additional redaining (at the time of proposing stady programme)

-

1.12. Number of assigned reading copies with regard to the number of students currently attending the course

Title	Number of copies	Number of students
Ian H.Witten, Eibe Frank, Mark A. Hall: Data mining: Practical machine learning tools and techniques, Morgan Kaufmann, 2016.	1	10
Alexander I.J. Forrester, Andreas Sobester, Andy J. Keane: Engineering design via surrogate modelling: A practical guide, Wiley, 2008.	1	10
A. Katok, B. Hasselblatt, "Introduction to the Modern Theory of Dynamical Systems", Cambridge University Press, 1995.	1	10
1.13. Quality monitoring methods which ensure acau	irement of output k	nowledae. skills and

1.13. Quality monitoring methods which ensure acquirement of output knowledge, skills and competences

Basic description						
Course title	Theory of Machines and Mechanisms	Fheory of Machines and Mechanisms				
Study programme	Graduate University Study of Mechanical Engi	Graduate University Study of Mechanical Engineering				
Course status	optional					
Year	1.					
ECTS credits and	ECTS student 's workload coefficient	5				
teaching	Number of hours (L+E+S)	30+30+0				

1.1. Course objectives

The ability of analysis and synthesis of planar and spatial mechanisms. Solving theoretical and practical problems in the field of dynamics of machines and robots.

1.2. Course enrolment requirements

None.

1.3. Expected course learning outcomes

Make kinematic and dynamic models of simple planar and spatial mechanisms. Explain the basic principles and methods of synthesizing mechanisms. Matematically model and analyze mechanisms of manipulators and robots. Explain the principle of balancing of mechanisms and components of the robot. Differentiate the principles of balancing of mechanisms of engines with one or more cylinders. Explain the basic principles of elastic foundation of machines. Calculate natural frequencies and responses of forced vibrations of a rigid body. Analyze the kinematics and dynamics of rigid and flexible rotors numerically and experimentally. Apply numerical simulation and perform practical balancing of rotor in one or more planes.

1.4. Course content

Kinematics and dynamics of planar and spatial mechanisms. Methods of mechanism synthesizing. Analytical methods for the assessment of velocities and accelerations as well as forces of the planar and spatial mechanisms. Analysis of mechanisms of robots and manipulators. Balancing of engine mechanisms with one or more cylinders. Elastic foundation of machines. Natural frequencies and forced vibrations of rigid body. Kinematics and dynamics of rotors. Balancing of rotor in one or more planes. Rigid and elastic rotors.

1.5. Teaching methods Iectures
 seminars and workshops
 exercises
 long distance education
 fieldwork

individual assignment
 multimedia and network
 laboratories
 mentorship

lother

1.6. Comments

1.7. Student's obligations

Course attendance, activity, homework, studying.

1.8. Evaluation of student's work

Course attendance	2	Activity/Participation	Seminar paper	1	Experimental work	
Written exam	1.5	Oral exam	Essay		Research	
Project		Sustained knowledge check	Report		Practice	

Portfolio	Excercises	0.5					
1.9. Procedur	re and examples of learning outcom	ne assessment	in class and at th	e final	exam		
Course attendance, activity, 6 constructional exercises, 2 seminars, written exam.							
1.10. A.	1.10. Assigned reading (at the time of the submission of study programme proposal)						
Uicker, J.J. et all: Theory of machines and Mechanisms, Oxford University Press, New York, 2015. Kovačić, Z. et al.: Basics of robotics, Faculty of Electrical Engineering and Computing, Zagreb, 2000. (in Croatian) Kumar Mallik, A. Et all: Kinematik Analysis and Synthesis of Mechanisms, CRC Press, 1994.							
1.11. O	ptional / additional reading (at the	time of prop	osing study progra	amme)			
Jazar, R.N.: Theory of applied Robotics: Kinematics, Dynamics, and Control, Springer – Verlag, 2007. Khurmi, R. et al.: Theory of Machines, 14th ed.; S. Chand & Co. Ltd., New Delhi 2005. 1.12. Number of assigned reading copies with regard to the number of students currently							
attending	g the course						
	Title		Number of co	oies	Number student	-	
Uicker, J.J. et all: 1 University Press, I	Theory of machines and Mechanisn New York, 2015.	ns, Oxford	1		5		
Kovačić, Z. et al.: Basics of robotics, Faculty of Electrical15Engineering and Computing, Zagreb, 2000. (in Croatian)15							
Kumar Mallik, A. Et all: Kinematik Analysis and Synthesis of Mechanisms, CRC Press, 1994.15							
1.13. Quality monitoring methods which ensure acquirement of output knowledge, skills and competences							

Basic description				
Course title	Thermal Measurements	Thermal Measurements		
Study programme	Graduate University Study of Mechanical Engineering			
Course status	optional			
Year	2.			
ECTS credits and	ECTS student 's workload coefficient	5		
teaching	Number of hours (L+E+S)	30+30+0		

1.1. Course objectives

Within the course students acquire theoretical knowledge and skills that are required to set up and perform measurements on HVAC systems and present the experimental results.

1.2. Course enrolment requirements

None.

1.3. Expected course learning outcomes

Compare field and laboratory measuring methods for HVAC and energy systems. Differentiate liquid volume flow rate measuring methods in closed-loop circulation systems, with special application to the hydronic balancing of heating and cooling systems and operation control of the circulation pumps. Describe the methods of air velocity and flow rate measurements in air ducts. Discuss the methods of air flow velocity and temperature distribution measurements in ventilated and air-conditioned spaces. Classify solar irradiance measurements methods, with application to the efficiency estimation of solar thermal collectors or photovoltaic modules. Calculate thermal conductivity of materials and heat transfer coefficients of building elements based on the field results of heat fluxes measurements. Comment the methods of heat exchangers performances measurements. Discuss principles of thermal imaging, with application to the detection of thermal bridges and zones of increased heat fluxes. Interpret results of solid biomass and waste calorific value measurement methods. Apply acquired knowledge in planning, setting up and carrying out practical laboratory and field measurements and presenting obtained results.

1.4. Course content

Measurements in thermal engineering, importance and application. Measurement sensors – definition, types, and fundamental characteristics. Measurement errors. Laboratory and field measurements. Liquid volume flow rate measurements in closed-loop systems. Air velocity and flow rate measurements in air ducts. Air distribution, turbulence level and temperature measurements in enclosed spaces. Measurements of specific heat fluxes and determination of heat transfer coefficients and thermal conductivity of materials. Evaluation of heat exchanger performances. Thermal imaging. Determination of calorific value of solid biomass and waste. Solar irradiance measurements. Creating reports and presenting measurement results.

	🔀 lectures	🔀 individual assignment		
1.5. Teaching	seminars and workshops	multimedia and network		
methods	🖄 exercises	🔀 laboratories		
methous	Iong distance education	mentorship		
	🗌 fieldwork	other		
1.6. Comments				
1.7. Student's obligations				

Course attendance, activity, writing reports on the measurements performed, studying.

1.8. Evaluatio	on of stu	ıdent's work						
Course attendance	2	Activity/Participation		Seminar ı	oaper		Experimental work	
Written exam		Oral exam	0.5	Essay			Research	
Project		Sustained knowledge check	1	Report	:	1.5	Practice	
Portfolio								
1.9. Procedur	re and e	xamples of learning outco	ome ass	essment in	class and c	at th	e final exam	
Course attendand (three mid-term e		ity, writing reports on the oral exam.	measu	irements pe	erformed, o	cont	inuous knowledge	e testing
1.10. A	ssigned	reading (at the time of th	ne subr	nission of st	udy progra	ımm	e proposal)	
Teaching material	ls.							
1.11. 0	ptional	/ additional reading (at th	ne time	of proposin	g study pro	ogra	mme)	
		ASHRAE Atlanta, 2008.					M"	
		ramek: Heitzung und Klim						
		of assigned reading cop	Jies wi	tri reguru	to the h	umb	er of students c	urrentiy
uttenum	attending the course Title Number of copies Number of students					-		
1.13. Quality monitoring methods which ensure acquirement of output knowledge, skills and competences								

Basic description					
Course title	Thermal Power Plants	Thermal Power Plants			
Study programme	Graduate University Study of Mechanical Engineering				
Course status	optional				
Year	2.	2.			
ECTS credits and	ECTS student 's workload coefficient	5			
teaching	Number of hours (L+E+S)	45+15+0			

1.1. Course objectives

Adoption of the theoretical knowledge and skills for solving technical problems in the field of design, operation and maintenance of thermal power plants.

1.2. Course enrolment requirements

None.

1.3. Expected course learning outcomes

Describe and analyze the conversion of energy in power plants to produce electricity and heat. Describe and analyze the plant with steam and gas turbines. Develop energy balance and calculating efficiency of thermal power plants with steam and gas process. Analyze and explain the factors influencing efficiency of thermal power plants. Draw the basic scheme of the main types of thermal power plants. Describe and calculate the main components of thermal power plants (steam generators, turbines, condensers, regenerative water heaters, cooling towers, gas turbines, compressors, waste heat boiler). Describe the main influential factors when designing thermal power plants. Describe the main principles of good maintenance of thermal power plants.

1.4. Course content

Introduction to thermal power plants. Steam power plant. Utilization and fuel efficiency of steam power plants. Ways of increasing the efficiency of steam power plants. Steam plant for the combined production of electricity and heat. Steam generators. Heat balance, efficiency and fuel consumption in the steam generators. Steam turbines. The working principle of a steam turbine. Types of steam turbines. Losses and efficiency of steam turbines. Steam condensers. Regenerative water heaters. Cooling towers. Treatment of feed water in steam thermal power plants. Design, modeling and optimization of thermal power plants. Gas fired power plants. The main types of gas thermal power plants. Thermal power plants with a combined gas-steam process. Cogeneration and trigeneration thermal power plants. The main parts of a gas turbine plant. Non-conventional power plants. Hydro-electric power plant.

1.5. Teaching methods	 lectures seminars and workshops exercises long distance education fieldwork 	 individual assignment multimedia and network laboratories mentorship other
1.6. Comments		
1.7. Student's oblig	ations	

Course attendance, activity, homework, studying.

1.8. Evaluation of student's work

Course attendance	2	Activity/Participation		Seminar paper	Experimental work
Written exam		Oral exam	1	Essay	Research
Project		Sustained knowledge check	1.5	Report	Practice
Portfolio		Homework	0.5		

1.9. Procedure and examples of learning outcome assessment in class and at the final exam

Course attendance, activity, homework, continuous knowledge testing (2 mid-term exams), written or oral exam.

1.10. Assigned reading (at the time of the submission of study programme proposal)

Prelec, Z.: Energetics in process industry (in Croatian), Školska knjiga, Zagreb, 1994.

1.11. Optional / additional reading (at the time of proposing study programme)

Požar, H.: Basis of energetics, 1st and 2nd part (in Croatian), Školska knjiga Zagreb, 1976., 1978,

El-Vakil, M.: Power plant technology, Mc Graw Hill Book Company, 2002.

Zhu, F.: Energy and Process Optimization for the Process Industries, Wiley-AIChE, 2013.

Jaluria, Y.: Design and Optimization of Thermal Systems, CRC Press, 2020.

1.12. Number of assigned reading copies with regard to the number of students currently attending the course

Title	Number of copies	Number of students
Prelec, Z.: Energetics in process industry (in Croatian), Školska knjiga, Zagreb, 1994.	10	30

1.13. Quality monitoring methods which ensure acquirement of output knowledge, skills and competences

Through the Institution's system of quality control

Basic description				
Course title	Thermal Processes of Materials			
Study programme	Graduate University Study of Mechanical Engineering			
Course status	optional			
Year	2.			
ECTS credits and	ECTS student 's workload coefficient	5		
teaching	Number of hours (L+E+S)	30+30+0		

1.14. Course objectives

Understanding of reaction, microstructure transformation and mechanical behaviour of materials during the thermal processes: heat treatment, thermo-mechanical processing, surface engineering, casting and welding. Understanding of behaviour of materials at low and high temperatures.

1.15. Course enrolment requirements

Attended courses Metal Materials.

1.16. Expected course learning outcomes

Define basic thermal processes: heat treatment, thermos-mechanical processing, surface engineering, casting and welding. Define theoretical findings regarding to thermal processes of materials. Analyse the classical methods of predicting of result of thermal processes of materials. Analyse the possibilities of applications of thermal processes of materials. Analyse behaviour of materials in specific thermal condition, or to analyse application of materials at low and high temperatures.

1.17. Course content

Basic thermal processes, heat treatment, thermo-mechanical processing, surface engineering, casting and welding. Equilibrium and non-equilibrium phenomenon microstructure transformations, reaction during the heating, slow cooling and quenching in steel and other metal alloys. Process of melting and crystallization. Possibilities of heat treatment, thermo-mechanical processing, surface engineering, casting and welding of steel and other metal alloys. Application of TTT-diagrams in heat treatment. Designing of mold cavity, risering and gating system. Abilities of heat treatment of cast alloys and welding joints. Chemical and physical vapor deposition. Deposition of thin layers by spraying technologies. Laser surface hardening, structure refinement, melting, alloying and laser fusion of coating. Ion implantation. Failings in thermal processing of materials. Appearance of residual stresses. Appearance of thermal fatigue, thermal shock, creep and thermal destruction of materials. Prediction of results, residual stresses and distortions at thermal processes of materials. Methods of testing and characterization of results of thermal processing of materials.

processes of materials methods of testing and enaracterization of results of thermal processing of materials					
1.18. Teachin g methods	 lectures seminars and workshops exercises long distance education fieldwork 	 individual assignment multimedia and network laboratories mentorship other 			
1.19. Comme	-				
nts					
1.20. Student's obligations					
Course attendance, preparation of seminars, studying.					
1.21. Evaluation of student's work					

Course attendance	2	Activity/Participation		Seminar paper	1	Experimental work
Written exam	1	Oral exam		Essay		Research
Project		Sustained knowledge check	1	Report		Practice
Portfolio		Homework				
1.22. Procedure and examples of learning outcome assessment in class and at the final exam						

Course attendance, sustained knowledge check, seminar papers, written exam.

1.23. Assigned reading (at the time of the submission of study programme proposal)

Smoljan, B., Heat treatment of steel, gray and ductile iron castings, Zagreb: Hrvatsko društvo za toplinsku obradbu i inženjerstvo površina, Udžbenici Sveučilišta u Rijeci, 1999. (in Croatian)

Krumes, D., Heat treatment, Strojarski fakultet u Slavonskom Brodu, Slavonski Brod 2000. (in Croatian) Katavić, I.: Foundry, Sveučilište u Rijeci, 1993. (in Croatian)

Gojić, M., Techniques for materials joining and separation, Sveučilište u Zagrebu, Metalurški fakultet, 2003. (in Croatian)

Duplančić, I.: Metal Forming Processes, Fakultet elektrotehnike, strojarstva i brodogradnje Sveučilišta u Splitu, 2007. (in Croatian)

1.24. Optional / additional reading (at the time of proposing study programme)

Schumann, H., Metallographie, VEB Deutscher Verlag fuer Grundstoffindustrie, Leipzig, 1967. DeGarmo, Paul E., Materials and processes in manufacturing, Macmillan Publishing Co., Inc., New York, 1974.

Metals engineering – processes, ASME Handbook, McGraw-Hill Book Co., Inc., New York, etc., 1958.

1.25. Number of assigned reading copies with regard to the number of students currently attending the course

Title	Number of copies	Number of students
Smoljan, B., Heat treatment of steel, gray and ductile iron castings, Zagreb: Hrvatsko društvo za toplinsku obradbu i inženjerstvo površina, Udžbenici Sveučilišta u Rijeci, 1999. (in Croatian)	4	30
Smoljan, B., Fundamentals of heat treatment of steel, Rijeka: Sveučilište u Rijeci, Pedagoški fakultet, 1997. (in Croatian)	6	30
Krumes, D., Heat treatment, Strojarski fakultet u Slavonskom Brodu, Slavonski Brod 2000. (in Croatian)	1	30
Katavić, I.: Foundry, Sveučilište u Rijeci, 1993. (in Croatian)	21	30
Gojić, M., Techniques for materials joining and separation, Sveučilište u Zagrebu, Metalurški fakultet, 2003. (in Croatian)	2	30
Duplančić, I.: Metal Forming Processes, Fakultet elektrotehnike, strojarstva i brodogradnje Sveučilišta u Splitu, 2007. (in Croatian)	2	30

1.26. Quality monitoring methods which ensure acquirement of output knowledge, skills and competences

Basic description				
Course title	Thermodynamics II	Thermodynamics II		
Study programme	Graduate University Study of Mechanical Engineering			
Course status	compulsory			
Year	1.			
ECTS credits and	ECTS student 's workload coefficient	7		
teaching	Number of hours (L+E+S)	45+30+0		

1.1. Course objectives

Obtaining theoretical knowledge and develop skills to solve practical problems in the field of thermodynamics. Acquiring the knowledge required for attending lectures in the field of thermal and energy engineering.

1.2. Course enrolment requirements

Basic knowledge of thermodynamics.

1.3. Expected course learning outcomes

Define and mathematically describe heat conduction. Define and mathematically describe heat transfer by convection. Describe Oberbeck's mathematical model as well as define and describe differential equations of fluid flow and heat transfer in the boundary layer. Interpret analogy theorem and define and describe dimensionless parameters of fluid flow and heat transfer. Describe and compare heat transfer by natural and forced convection. Describe heat transfer in phase change processes. Describe and define the concept of black body and Stefan-Boltzmann's radiation law. Describe thermal radiation properties of natural bodies and gases. Define and describe heat transfer by radiation for special and general plane arrangement. Describe and analyze the gasification process and explain the Mollier-Hofmann's diagram. Describe and analyze the flow process with friction phenomenon. Define and describe reversible and irreversible mixing. Describe and analyze processes with humid air. Apply acquired knowledge to solve thermodynamic tasks (practical problems).

1.4. Course content

Heat transfer. Fourier's differential equation of heat conduction. Heat transfer by convection. Boundary layer. Differential equations of fluid flow and heat transfer. Oberbeck's mathematical model. Analogy theorem. Forced and natural convection. Dimensionless parameters. Heat transfer in phase change processes. Overall heat transfer coefficient. Thermal radiation. Black body. Stefan-Boltzmann's law. Radiation in half of area. Properties of thermal radiation. Radiation of natural bodies. Selectively radiation of gases. Heat transfer by radiation for special and general plane arrangement. Gasification. Transformation degree. Mollier-Hofmann's tetragon of generator gas. Flow process with friction phenomenon. Reversible and irreversible mixing. Irreversibility degree. Humid air. Processes with humid air.

1.5. Teaching methods	 lectures seminars and workshops exercises long distance education fieldwork 	 individual assignment multimedia and network laboratories mentorship other
1.6. Comments		
1.7. Student's obliga	itions	

Course attendance, activity, homework, studying.

1.8. Evaluation of student's work

	· · , · · ·					
Course attendance	2.5	Activity/Participation		Seminar paper	Experimental work	
Written exam		Oral exam	2	Essay	Research	
Project		Sustained knowledge check	2	Report	Practice	
Portfolio		Homework	0.5			

1.9. Procedure and examples of learning outcome assessment in class and at the final exam

Course attendance, activity, homework, continuous knowledge testing (three mid-term exams), written and oral exam.

1.10. Assigned reading (at the time of the submission of study programme proposal)

Bošnjaković, F.: Thermodynamics, Vol. I, II and III (reprint editions of 1978, 1976 and 1986), Graphis d.o.o., Zagreb, 2012. (in Croatian)

Halasz, B, Galović, A., Tadić, M.: Collections of exercises in Thermodynamics, part I, part II, Sveučilišna tiskara, Zagreb, 1993. and 1996. (in Croatian)

1.11. Optional / additional reading (at the time of proposing study programme)

Galović, A.: Termodynamics I, (book), Fakultet strojarstva i brodogradnje, Zagreb, 2007. (in Croatian) Galović, A.: Termodynamics II, (book), Fakultet strojarstva i brodogradnje, Zagreb, 2007. (in Croatian)

1.12. Number of assigned reading copies with regard to the number of students currently attending the course

Title	Number of copies	Number of students
Bošnjaković, F.: Thermodynamics, Vol. I, II and III (reprint editions of 1978, 1976 and 1986), Graphis d.o.o., Zagreb, 2012. (in Croatian)	38	120
Halasz, B, Galović, A., Tadić, M.: Collections of exercises in Thermodynamics, part I, part II, Sveučilišna tiskara, Zagreb, 1993. and 1996. (in Croatian)	19	120

1.13. Quality monitoring methods which ensure acquirement of output knowledge, skills and competences

Basic description					
Course title	Thermodynamics of Mixtures	Thermodynamics of Mixtures			
Study programme	Graduate University Study of Mechanical Engineering				
Course status	optional				
Year	2.				
ECTS credits and	ECTS student 's workload coefficient	5			
teaching	Number of hours (L+E+S)	45+30+0			

1.1. Course objectives

Accepting the theoretical knowledge and training of skills for solving practical problems in field of thermodynamics of mixtures. Accepting knowledge which is needed for attending subjects in fields of thermal systems.

1.2. Course enrolment requirements

Attended course Thermodynamics II.

1.3. Expected course learning outcomes

Describe the thermal phenomena of mixing, Merkel diagram and explain the rule of mixing. Describe and analyze the process of vaporisation and liquefaction of homogeneous and heterogeneous mixture. Define and describe the process of damping. Define and describe the process of absorption. Define and mathematically describe the processes of distillation deflegmation and rectification. Define and mathematically describe the process of adiabatic evaporation. Define and mathematically describe the process of adiabatic evaporation. Define and mathematically describe the process of adiabatic evaporation. Define and mathematically describe the process of adiabatic evaporation. Define and mathematically describe the process of solve the near analyze the heat and mass transfer in circulating cooling by evaporation. Apply acquired knowledge to solve thermodynamic tasks (practical problems).

1.4. Course content

The properties of binary mixtures. Homogeneous and heterogeneous mixtures. Thermal processes with binary mixtures. Vaporisation and liquefaction of binary mixtures. The separation of the mixture. Damping. Absorption. Absorption refrigeration unit. Adiabatic evaporation. Direction of change of state and cooling temperature limit. Non-adiabatic evaporation. Unit size and direction of change of state. Practical applications - cooling tower.

1.5. Teaching methods	 lectures seminars and workshops exercises long distance education fieldwork 	 individual assignment multimedia and network laboratories mentorship other 			
1.6. Comments					
1.7. Student's obliga	itions				
Course attendance, activity, homework, studying.					
1.8. Evaluation of student's work					

Course attendance	2.5	Activity/Participation		Seminar paper	Experimental work	
Written exam		Oral exam	1	Essay	Research	
Project		Sustained knowledge	1	Report	Practice	

	check			
Portfolio	Homework	0.5		
1.9. Procedure	and examples of learning	outcome assessme	nt in class and at the fina	l exam
Course attendance oral exam.	, activity, homework, cont	inuous knowledge	testing (three mid-term	exams), written an
1.10. Ass	signed reading (at the time	e of the submission	of study programme pro	posal)
Bošnjaković, F.: Th Zagreb, 2012. (in C	ermodynamics, Parts I., II. roatian)	& III. (pretisak izo	danja iz 1978., 1976. i 19	86.), Graphis d.o.o
1.11. Op	tional / additional reading	(at the time of pro	posing study programme,)
	mber of assigned reading the course	g copies with reg	gard to the number of	students current
	Title		Number of copies	Number of students
•	ermodynamics, Parts I., II. 8 76. i 1986.), Graphis d.o.o.	••	38	18
Croatian)		, 205100, 2012. (11	30	10
1.13. Qu competen	ality monitoring methods ces	which ensure a	cquirement of output kn	owledge, skills an
Through the Institu	tion's quality assurance sys	stem.		

Basic description					
Course title	Thermomechanics	Thermomechanics			
Study programme	Graduate University Study of Mechanical Engineering				
Course status	optional				
Year	1.				
ECTS credits and	ECTS student 's workload coefficient	5			
teaching	Number of hours (L+E+S)	30+30+0			

1.1. Course objectives

Obtaining theoretical knowledge and develop skills to solve practical problems of thermal stresses.

1.2. Course enrolment requirements

None.

1.3. Expected course learning outcomes

Define balance laws of continuum mechanics. Describe mechanical behaviour in the elevated temperature conditions. By analytical procedures determine stress and displacements distributions in trusses, beams and plate structures for the nonisothermal environment. Determine stress and displacement distribution for the problems defined in cylindrical and spherical coordinate systems. To solve problems of thermal stresses and dilatations in a pipeline. Define basic equation of a finite element in the variable temperature regime. By the application of finite element method solve time-independent and time-dependent problems.

1.4. Course content

Introduction. Basic laws of continuum mechanics. Constitutive equations for elastic and inelastic material is elevated temperature environment. Thermoelasticity. Basic problems of thermal stresses. Thermal stresses in rods, beams and plates – analytical solutions. Numerical determination of thermal stresses in complex structures. Time dependent and time independent problems. Coupled problems in thermomechanics.

1.5. Teaching methods	🖂 lectures	🔀 individual assignment
	seminars and workshops	multimedia and network
	🔀 exercises	🔀 laboratories
	Iong distance education	🗌 mentorship
	🗌 fieldwork	other
1.6. Comments	-	

1.7. Student's obligations

Course attendance, activity, homework, seminar paper, studying.

1.8. Evaluation of student's work

Course attendance	2	Activity/Participation		Seminar paper	2	Experimental work	
Written exam	0.5	Oral exam		Essay		Research	
Project		Sustained knowledge check		Report		Practice	
Portfolio		Homework	0.5				

1.9. Procedure and examples of learning outcome assessment in class and at the final exam

Course attendance, activity, homework(2), seminar paper, written exam.

1.10. Assigned reading (at the time of the submission of study programme proposal)

Boley, B. A., Weiner, J. H.: «Theory of Thermal Stresses», Dover Publications, Mineola, 1997. Brnić, J., Čanađija, M.:"Finite element analysis of solids, Fintrade, Rijeka, 2009. (in Croatian)

1.11. Optional / additional reading (at the time of proposing study programme)

Salencon, J.: «Handbook of Continuum Mechanics. General Concepts – Thermoelasticity», Springer – Verlag, Wien, 2001.

Maugin, G.: «Thermomechanics of Plasticity and Fracture», Cambridge Univ. Press, 1992.

Bathe, K. J.:»Finite Element Procedures», Prentice Hall, Englewood Cliffs, 1996.

1.12. Number of assigned reading copies with regard to the number of students currently attending the course

Title	Number of copies	Number of students
Boley, B. A., Weiner, J. H.: «Theory of Thermal Stresses», Dover Publications, Mineola, 1997.	4	5
Brnić, J., Čanađija, M.:"Finite element analysis of solids, Fintrade, Rijeka, 2009. (in Croatian).	10	5
1.13. Quality monitoring methods which ensure acqu competences	uirement of output k	nowledge, skills and

Basic description					
Course title	Transport Systems	Transport Systems			
Study programme	Graduate University Study of Mechanical Eng	Graduate University Study of Mechanical Engineering			
Course status	optional	optional			
Year	2.				
ECTS credits and	ECTS student 's workload coefficient	5			
teaching	Number of hours (L+E+S)	30+30+0			

1.1. Course objectives

Acquiring knowledge and skills about topics related to transport systems. The development of the ability to calculate, design and apply transport systems in industrial praxis, using modern materials and taking into consideration demands regarding reliability, safety, quality, cost, ecology, ergonomics, engineering ethics, etc.

1.2. Course enrolment requirements

None.

1.3. Expected course learning outcomes

Explain term, purpose, classification, application and historical development of transport systems and transport logistics. Explain and define industrial transport equipment and devices in warehouses. Explain and define hand and motor driven industrial vehicles. Understand the importance of using green transport logistics, transportation ecology and engineering ethics in in design and application of transport systems. Explain and define table top chain conveyors, overhead chain conveyors and bucket elevators. Explain and define unpowered and powered roller conveyers. Explain and define cranes and crane mechanisms, standards and service classes of hoisting appliances. Explain and define lifts, escalators, moving walkways, ropeways and small transport devices. Apply acquired knowledge in design and application of transport systems.

1.4. Course content

Introduction. Transport of materials and people. Historical development. The importance and place of transport in the industry. Basic concepts, application, divisions and characteristics of transport systems. Transport logistics. Industrial transport equipment and devices in warehouses. Hand and motor driven industrial vehicles: - types, description, calculation and design. Analysis of using green transport logistics, transportation ecology and engineering ethics in design and application of transport systems.

Table top chain conveyors, overhead chain conveyors, bucket elevators: - types, purpose, description and calculation. Unpowered and powered roller conveyors: - types, purpose, description and calculation. Cranes and crane mechanisms, standards and service classes of hoisting appliances: - types, features, purpose, description, calculation and design. Lifts, escalators, moving walkways, ropeways, small transport devices: - types, purpose, description and calculation.

1.5. Teaching methods	 lectures seminars and workshops exercises long distance education fieldwork 	 individual assignment multimedia and network laboratories mentorship other
1.6. Comments		

1.7. Student's obligations

Course attendance, activity, solving assigned project work, studying.

1.8. Evaluation of student's work

	-					
Course attendance	2	Activity/Participation		Seminar paper	Experimental work	
Written exam	0.5	Oral exam		Essay	Research	
Project	1	Sustained knowledge check	1.5	Report	Practice	
Portfolio		Homework				

1.9. Procedure and examples of learning outcome assessment in class and at the final exam

Course attendance, 2 mid-term exams, project work, final written exam.

1.10. Assigned reading (at the time of the submission of study programme proposal)

Oluić, Č.: Warehousing in Industry, FSB, Zagreb, 1997. (in Croatian)

Piršić, T.: Transport in Industry, FESB, Split, 2005. (in Croatian)

Habus, J., Zlonoga, D.: Applications of Forklifts, Nakladništvo & Marketing, Zagreb, 1997. (in Croatian)

1.11. Optional / additional reading (at the time of proposing study programme)

Dundović, Č., Hess, S.: Indoor Transport and Warehousing, Pomorski fakultet, Rijeka, 2007. (in Croatian) Zlonoga, D., Lukačević, M.: Pallets and Palletisation, August Šenoa, Zagreb, 1993. (in Croatian)

Baura, Gail, D.: Engineering Ethics: An Industrial Perspective, Elsevier Academic Press, USA, 2006.

Herold, Z., Ščap, D., Hoić, M.: Lifting and Handling Equipment, Part 1, Fakultet strojarstva i brodogradnje, Zagreb, 2020. (in Croatian)

Herold, Z., Ščap, D., Hoić, M.: Lifting and Handling Equipment, Part 2, Fakultet strojarstva i brodogradnje, Zagreb, 2020. (in Croatian)

Janovsky, L.: Elevator Mechanical Design, Elevator World, Inc., U.S., 2017.

McCain, Z.: Elevators 101, Elevator World, Inc., U.S., 2015.

Abbaspour, B.: Escalator Engineering, Elevator World, Inc., U.S., 2017.

1.12. Number of assigned reading copies with regard to the number of students currently attending the course

Title	Number of copies	Number of students
Oluić, Č.: Warehousing in Industry, FSB, Zagreb, 1997. (in Croatian)	5	19
Piršić, T.: Transport in Industry, FESB, Split, 2005. (in Croatian)	1	19
Habus, J., Zlonoga, D.: Applications of Forklifts, Nakladništvo & Marketing, Zagreb, 1997. (in Croatian)	1	19
1 13 Quality monitoring methods which ensure aca	urement of output k	nowledge skills and

1.13. Quality monitoring methods which ensure acquirement of output knowledge, skills and competences

	Basic description	
Course title	Vibrations	
Study programme	Graduate University Study of Mechanical Eng	ineering
Course status	optional	
Year	1.	
ECTS credits and	ECTS student 's workload coefficient	4
teaching	Number of hours (L+E+S)	30+30+0

1.1. Course objectives

Obtaining theoretical and practical knowledge of mechanical system vibration analysis. To understand the importance of vibration analysis with the goal of reducing its harmful influence on durability of machines and structures.

1.2. Course enrolment requirements

None.

1.3. Expected course learning outcomes

Explain the basic concepts of kinematics vibrational motion. Distinguish different ways of expressing the amplitude of vibration. Make transformation of nonharmonic periodic functions in Fourier's order. Time and frequency domain representation of the vibration signal. To analyze the problem of free vibration of single degree of freedom–SDOF system. Distinguish undamped from damped vibrations. Harmonic excitation of the SDOF system. Define equations of motion of the single and two DOFs and calculate their natural frequencies and modes of vibrations. Perform reduction of continuous system on a lumped mass system. Specify and describe measuring devices and sensors for vibration measurements. Indicate measures for reduction of vibration, passive and active approach.

1.4. Course content

Vibration kinematics. Fourier analysis and frequency spectra. Vibration dynamics of the SDOF system: free and forced vibrations of undamped and damped systems. Different types of excitations: harmonic, rotating unbalance and support excitation. Jeffcott – Laval rotor model. Vibration isolation. System response on general periodic and nonperiodic excitation. System with two (multiple) DOF: free and forced vibration. Lumped mass modelling of distributed masses. Finite element method in vibration problems. Vibration measurements: sensors and equipment. Durability of structure and measures for vibration reduction. Response on seismic excitation.

Response on seisinic exci		
1.5. Teaching methods	 lectures seminars and workshops exercises long distance education fieldwork 	 individual assignment multimedia and network laboratories mentorship other
1.6. Comments		
1.7. Student's obliga	tions	
Course attendance, activ	ity, student laboratory reports, studying	
1.8. Evaluation of stu	ıdent's work	

attendance	2	Activity/Participation		Seminar paper	Expe work	rimental	
Written exam	1	Oral exam		Essay	Rese	arch	
Project		Sustained knowledge check	0.5	Report	Pract	ice	
Portfolio		Laboratory exercises	0.5				
1.9. Procedui	re and e	examples of learning outco	me asse	essment in class ar	d at the final	exam	
Course attend	dance, a	activity, student laboratory	reports	s, written exam. Su	ustained know	vledge check	•
1.10. A	ssignea	I reading (at the time of th	ne subm	ission of study pro	gramme prop	osal)	
2001. (in Croatian	า)	Žigulić, R., Braut, S., Franu ration, FSB Zagreb, 1996 (ii		•	y and applicat	ion, TFR, Rije	eka,
1.11. O)ptional	/ additional reading (at th	ne time d	of proposing study	programme)		
Žigulić, R., Braut,	S.: Kine	matika, Tehnički fakultet S	veučiliš	ta u Rijeci, 2012.			
Rao, S.S.: Mechar	าical Vib	orations, Pearson, Sixt editi	ion, 201	8.			
Benaroya, H., Na Press, Boca Raton	-	M.L.: Mechanical Vibratio	on; Ana	lysis, Uncertantie	s and Contro	l, 3rd editio	n, CR
1.12. N attendin	g the co	of assigned reading cop ourse	oies wit	h regard to the	number of	students cu	rrenti
	g the co		oies wit		e number of r of copies	students cu Number student	of
attendin Krpan, M., Butkov	vić, M.,	ourse	lović, A.	Numbe		Number	of
attendin Krpan, M., Butkov Dynamics, Theory	vić, M., y and ap	Title Žigulić, R., Braut, S., Franu	lović, A. 1. (in Cr	Numbe Numbe	r of copies	Number student	of
attendin Krpan, M., Butkov Dynamics, Theory	vić, M., y and ap	<i>Title</i> Žigulić, R., Braut, S., Franu pplication, TFR, Rijeka, 200	lović, A. 1. (in Cr	Numbe Numbe	r of copies 16	Number student 8	of

	Basic description	
Course title	Visualization and Preparation of Computer Si	mulations
Study programme	Graduate University Study of Mechanical Eng	ineering
Course status	optional	
Year	1.	
ECTS credits and	ECTS student 's workload coefficient	5
teaching	Number of hours (L+E+S)	30+30+0

1.1. Course objectives

Assessment and preparation of the computational domain for the numerical simulation. Creating geometry, numerical meshes and various types of visualizations using commercial and free software tools for CAD, meshing and analysis of calculated results.

1.2. Course enrolment requirements

None.

1.3. Expected course learning outcomes

Define the computational domain for a particular physical problem. Create the computational domain using CAD software. Understand different CAD exchange formats and distinguish their advantages and disadvantages. Indicate and correctly interpret types of numerical meshes. Create and compare numerical meshes of different basic element types, applicable to the same problem. Specify and correctly apply visualization techniques to analyze numerical results. Apply the appropriate visualization techniques for preparation of specific representations of results with complex computational domains.

1.4. Course content

Defining physical problem and associated computational domain. Modelling the computational domain with CATIA and ANSYS or any other contemporary software package. Creating specific computational domains. Importing geometry from

other CAD tools. Understanding the various CAD file formats. Types of numerical meshes. Structured and unstructured meshes. Building a numerical mesh. Customizing mesh size and type to specific geometric features. Postprocessing of numerical results. Analysis and review of the results of numerical simulations using Fluent, CFX, Ansys software packages. XY graphs, contour plots and vector plots, path lines, 3D isosurfaces. Animating results for unsteady simulation cases. Creating reports.

1.5. Teaching methods		 lectures seminars and worksho exercises long distance educatio fieldwork 	pps	individual a multimedia laboratories mentorship other	and network	
1.6. Commen	ts					
1.7. Student's	s obliga	tions				
Course attendance	e, activi	ty, homework, independer	it studying.			
1.8. Evaluatio	on of stu	ıdent's work				
Course attendance	2	Activity/Participation	Seminar p	oaper	Experimental work	

Written exam		Oral exam	Essay		Research	
Project	3	Sustained knowledge check	Report		Practice	
Portfolio		Homework				
1.9. Procedur	e and e	xamples of learning outcome	e assessment i	n class and at the	final exam	
Course attend	lance, a	ictivity, homework, project w	vork.			
1.10. A	ssigned	reading (at the time of the	submission of	study programme	proposal)	
•	ric M. (2	s (Catia, Ansys) 1999) Computational Methor ial Computational Fluid Dyna	•		•	
1.11. 0	ptional	/ additional reading (at the t	time of propos	ing study progran	nme)	
1.12. N attending		of assigned reading copies ourse	s with regard	I to the numbe	r of students c	urrent
		5 5 1	s with regarc	I to the numbe Number of copie	Numbe	r of
attendin	g the co	Title	s with regarc		Numbe	r of
attending User guides and T Ferziger J.H. & Pe	g the co utorials ric M. (2	Title 5 (Catia, Ansys) 1999) Computational Method		Number of copie	es Numbe studer	r of
attending User guides and T Ferziger J.H. & Pe Dynamics, Springe Zikanov O. (2010)	g the co futorials ric M. (2 er, Berli Essenti	Title 5 (Catia, Ansys) 1999) Computational Method	ds for Fluid	Number of copie	es Numbe studer 30	r of
attending User guides and T Ferziger J.H. & Pe Dynamics, Springe Zikanov O. (2010)	g the co futorials ric M. (2 er, Berli Essenti	<i>Title</i> 5 (Catia, Ansys) 1999) Computational Metho n, Germany. ial Computational Fluid Dyna	ds for Fluid	Number of copie e-copies 1	es Numbe studer 30 30	r of